HUSSMANN[®] EV®

OCU040

Unidad condensadora exterior con refrigerante CO₂

Temperatura media y baja

ADVERTENCIA: Esta unidad condensadora de CO₂ deberá conectarse únicamente a un aparato apto para el mismo refrigerante.

Manual de instalación y operación

IMPORTANTE

¡Guárdelo para referencia futura!

ANTES DE COMENZAR

Lea la información de seguridad completa y atentamente.

Las precauciones y la aplicación de los procedimientos descritos en este documento tienen como fin el uso del producto de modo correcto y seguro. Cumpla con las precauciones descritas a continuación para protegerse a usted y a otras personas de lesiones. Con relación al posible peligro, los asuntos relevantes se dividen en cuatro partes, según lo que define ANSI Z535.5

DEFINICIONES ANSI Z535.5

ADVERTENCIA

APRECAUCIÓN

AVISO

INSTRUCCIONES DE SEGURIDAD **PELIGRO** indica una situación peligrosa que, si no se evita, tendrá como resultado la muerte o una lesión grave.

ADVERTENCIA indica una situación peligrosa que, si no se evita, podría tener como resultado la muerte o una lesión grave.

PRECAUCIÓN indica una situación peligrosa que, si no se evita, podría tener como resultado una lesión leve o moderada.

AVISO se utiliza para señalar prácticas no relacionadas con una lesión personal.

INSTRUCCIONES DE SEGURIDAD

(o equivalentes) indican instrucciones o procedimientos específicos relacionados con la seguridad.

AADVERTENCIA

- » Los contratistas deben cumplir rigurosamente con las especificaciones provistas por el ingeniero responsable (Engineer of Record, EOR), así como con los reglamentos de la Agencia de Protección Ambiental de Estados Unidos, los reglamentos de la OSHA y otros códigos federales, estatales y locales. Este trabajo solo deben llevarlo a cabo contratistas calificados y autorizados.
- » Existen diversos riesgos, entre los que se incluyen: quemaduras debido a temperaturas elevadas, presiones elevadas, sustancias tóxicas, arcos y descargas eléctricas, equipos muy pesados con puntos de izaje específicos y restricciones estructurales, daños o contaminación de alimentos y productos, seguridad pública, ruido y posibles daños ambientales.
- » Nunca deje compresores en funcionamiento sin supervisión durante el proceso de arranque suave manual. Apague siempre los interruptores oscilantes cuando no haya supervisión.

ADVERTENCIA

- » EQUIPO DE PROTECCIÓN PERSONAL (EPP)
- » Solo el personal calificado debe instalar y hacer el mantenimiento de este equipo. Se debe usar un equipo de protección personal (EPP) siempre que se haga mantenimiento a este equipo. Siempre que trabaje con este equipo, use gafas de seguridad, guantes, botas o zapatos de protección, pantalones largos y camisa de manga larga. Cumpla con todas las precauciones indicadas en las etiquetas, adhesivos, rótulos y documentos incluidos en este equipo.

AADVERTENCIA

- » ¡Se debe realizar el cableado y la conexión a tierra en el local de manera correcta!
- » El incumplimiento del código podría causar la muerte o lesiones graves. Todo el cableado en el local DEBERÁ llevarlo a cabo personal calificado. El cableado en el local que se instale y conecte a tierra de manera incorrecta supone riesgos de INCENDIO y ELECTROCUCIÓN. Para evitar estos riesgos, DEBE cumplir con los requisitos de instalación del cableado y conexión a tierra en el local según lo descrito en el NEC y en los códigos eléctricos locales/estatales.

CUESTIONES AMBIENTALES

Hussmann recomienda manipular los refrigerantes de forma responsable. Solo los técnicos calificados pueden manipular estos refrigerantes. Todos los técnicos deben conocer y cumplir con los requisitos establecidos por la Ley Federal de Aire Limpio (Sección 608) para cualquier procedimiento de servicio que se lleve a cabo en este equipo y que implique un refrigerante. Además, algunos estados tienen otros requisitos que se deben cumplir para la gestión responsable de refrigerantes.

AADVERTENCIA

— BLOQUEO Y ETIQUETADO —

» Para evitar lesiones graves o la muerte por descarga eléctrica, siempre desconecte la energía eléctrica desde el interruptor principal cuando haga mantenimiento o reemplace algún componente eléctrico. Esto incluye, entre otras cosas, elementos como los controladores, los paneles eléctricos, los condensadores, las lámparas, los ventiladores y los calentadores.

APRECAUCIÓN

» Este manual se escribió de conformidad con el equipo establecido originalmente, que está sujeto a cambios. Hussmann se reserva el derecho de cambiar la totalidad o parte del equipo para futuros locales, como por ejemplo los controladores y las especificaciones eléctricas, entre otras cosas. Los instaladores son responsables de consultar las ilustraciones de refrigeración suministrados para cada instalación, según las indicaciones del ingeniero responsable.

SOLO PARA INSTALACIONES EN CALIFORNIA:

ADVERTENCIA:

Cáncer y daños reproductivos www.P65Warnings.ca.gov

31 de agosto de 2018

306957

Esta advertencia no significa que los productos de Hussmann causarán cáncer o daños reproductivos, ni que violan alguna norma o requisito de seguridad del producto. Tal como lo aclara el gobierno del estado de California, la Propuesta 65 puede considerarse más como una ley sobre el "derecho a saber" que una ley pura sobre la seguridad de los productos. Hussmann considera que, cuando se utilizan conforme a su diseño, sus productos no son dañinos. Proporcionamos la advertencia de la Propuesta 65 para cumplir con las leyes del estado de California. Es su responsabilidad brindar a sus clientes etiquetas de advertencia precisas sobre la Propuesta 65 cuando sea necesario. Para obtener más información sobre la Propuesta 65, visite la página de Internet del gobierno del estado de California.

AADVERTENCIA

- » El uso de este equipo con cualquier refrigerante de la "Lista de sustancias prohibidas" está prohibido en California para ese uso final específico, conforme al Código de Reglamentos de California, título 17, sección 95374.
- El uso en otros lugares se limita a los refrigerantes autorizados por las leyes nacionales, estatales o locales, y es responsabilidad del instalador/usuario final asegurarse de que solo se usen refrigerantes autorizados.
- » Hussmann ha revisado y aprobado esta declaración de divulgación y declara, bajo pena de perjurio, que estas afirmaciones son fieles y precisas.
- El sistema de refrigeración está sometido a alta presión. No lo manipule indebidamente. Póngase en contacto con personal de servicio calificado antes de desecharlo.
- » La instalación del aparato y de la unidad de refrigeración debe ser realizada únicamente por el personal de servicio del fabricante o una persona debidamente calificada.

ÍNDICE

ANTES DE COMENZAR	2
Definiciones ANSI Z535.5	2
Cuestiones ambientales	
Inspección de la unidad	
Guía general de seguridad para sistemas de CO ₂	
Asfixia	
ASTIAID	
VISIÓN GENERAL DEL SISTEMA DE CO2	7
Introducción sobre la unidad condensadora exterior de CO ₂	7
Calidad del refrigerante CO ₂	
Componentes	
Rangos de funcionamiento	
Contramedidas para el funcionamiento en climas fríos	
Especificaciones nominales	
Rendimientos (208 V)	
Nivel de presión sonora	
INSTALACIÓN DE LA UNIDAD	11
Precauciones para los trabajos de instalación	
Uso económico de la unidad de refrigeración	
Precauciones para una unidad condensadora con CO ₂ transcrítico	
Selección del lugar de instalación	13
Colocación de la unidad de refrigeración	
Trabajos relativos a la base/plataforma	14
Dimensiones externas	14
Ejemplos de instalación	15
Trabajo en las tuberías de refrigerante	16
Precauciones para los trabajos de aislamiento térmico	17
Diagrama de tuberías de refrigerante	
Requisitos de los componentes de la válvula de alivio y el evaporador	
Carga de refrigerante	21
Método de carga	
Trabajos de conexiones eléctricas	23
Cableado	
Diagrama de circuitos eléctricos	
Guía previa al arranque	
Verificaciones finales antes del funcionamiento	26
Puesta en marcha y secuencia de funcionamiento	27
Alarmas	30
Ajuste e indicación	32
Ajuste de presión baja	
Indicación	
Ajuste de la lista de visualización	
Funciones de control y sistema	36
Ajuste durante el funcionamiento	37
Información adicional sobre las alarmas	39
Descripción de la alarma de anomalía	40
Mantenimiento e incrección	/11

DIAGNÓSTICO DE SERVICIO	42
Medidas en el momento de la falla	42
Borrado del historial de alarmas	
Diagnóstico de fallas	
Códigos de error	
Diagnóstico de fallas en caso de temperatura anormal del gas de descarga	45
Verificación de las características del sensor	46
Verificación de la resistencia de la bobina de la válvula de expansión electrónica	
Diagnóstico de fallas del circuito del inversor	48
Diagnóstico de fallas del circuito del inversor (PCB INV4-MF-EN, PCB INV4-H-EN)	49
PROCEDIMIENTOS DE SERVICIO	50
Método de funcionamiento de la válvula de servicio	50
Método de conexión/desconexión de la tubería de servicio	
Modo de evacuación	
Procedimiento de liberación de refrigerante	
Procedimiento de la prueba de estanqueidad	
Procedimiento de conexión de la bomba de vacío y evacuación	
Procedimiento de carga de refrigerante	
Procedimiento de reparación de fugas de gas	
Procedimiento de sustitución del compresor	
Procedimiento para rellenar el aceite	
ACCESORIOS OPCIONALES	64
PIEZAS DE REPUESTO	
INFORMACIÓN DE LA GARANTÍA	66

INSPECCIÓN DE LA UNIDAD

Al momento de la entrega de la(s) unidad(es), compare la información de la placa del número de serie de la unidad con los documentos de pedido y entrega para verificar que haya recibido la unidad y el equipo correctos. Antes y durante la descarga, todo el equipo debe ser inspeccionado completamente por si hubiera daños durante el envío. Este equipo fue inspeccionado detenidamente en nuestra fábrica. Cualquier reclamación por pérdida o daños debe hacerse al transportista. El transportista proveerá cualquier informe de inspección o formulario de reclamación que sea necesario.

GUÍA GENERAL DE SEGURIDAD PARA SISTEMAS DE CO2

Los sistemas de CO₂ tienen problemas de seguridad similares a los de todos los demás refrigerantes, ya que el CO₂ desplaza el oxígeno y es más pesado que el aire, por lo que se concentrará más cerca del suelo si se produce una fuga en el sistema. Al igual que con otros refrigerantes, se debe controlar el CO₂ para detectar fugas. Confirme que los detectores de fugas funcionen (p. ej., exhale cerca del sensor), así como las alarmas sonoras/visibles y la ventilación de la sala de máquinas.

Ventile las áreas cerradas adyacentes para evitar que se acumule dióxido de carbono en concentraciones peligrosas. El personal, incluido el de rescate, no debe entrar en zonas en las que la concentración de dióxido de carbono supere el 3% (30,000 ppm) según las mediciones, a menos que use un equipo de respiración autónomo (SCBA, por sus siglas en inglés) o respiradores con suministro de aire. Evite el contacto de la piel o los ojos con dióxido de carbono sólido (hielo seco) u objetos enfriados por dióxido de carbono sólido. Se puede encontrar más información sobre el uso y la manipulación seguros del dióxido de carbono en las normas de la Compressed Gas Association: https://www.cganet.com/.

ASFIXIA

El R744 es inodoro, más pesado que el aire y asfixiante. Si la lectura del sensor supera el máximo o el sensor no responde, suponga un nivel inseguro de CO₂ y ventile el recinto antes de entrar.

Límite práctico de R744, 0.006 lb/pies³ (56.000 ppm);

NOTA:

El límite práctico se define en ASHRAE 34, pero puede variar en función de las normativas regionales. La tabla siguiente resume el efecto del CO_2 a distintas concentraciones en el aire.

Una fuga de R744 podría dar lugar a una concentración superior al límite práctico en un espacio cerrado y ocupado, como una cámara de frío. Se deben tomar precauciones para evitar la asfixia. Entre ellas se incluye la detección permanente de fugas, que activa una alarma en caso de fuga.

PPM de CO ₂	Efectos
370	Concentración en la atmósfera
5000	Límite de exposición a largo plazo (8 horas)
15,000	Límite de exposición a corto plazo (10 minutos)
30,000	Malestar, dificultades para respirar, dolor de cabeza, mareos, etc.
100,000	Desmayo, muerte
300,000	Muerte rápida

VISIÓN GENERAL DEL SISTEMA DE CO2

INTRODUCCIÓN SOBRE LA UNIDAD CONDENSADORA EXTERIOR DE CO₂

Este manual proporciona información general sobre la instalación, la puesta en marcha, el mantenimiento y el servicio de una unidad condensadora exterior que utiliza dióxido de carbono (CO₂). Para obtener más información sobre el producto, escanee el código QR de la etiqueta de datos de la unidad, visite gr.hussmann.com o póngase en contacto con su representante de Hussmann.

Algunas consideraciones y especificaciones adicionales para la instalación en el lugar de trabajo específico son:

- Inscripción que indica la carga del equipo y los requisitos eléctricos
- Secuencia de operaciones específica del lugar
- Especificaciones de los componentes
- Diagramas de tuberías
- Requisitos de dimensiones e izado específicos del lugar
- Descripción general del equipo y lista de opciones

ADVERTENCIA: Presión alta

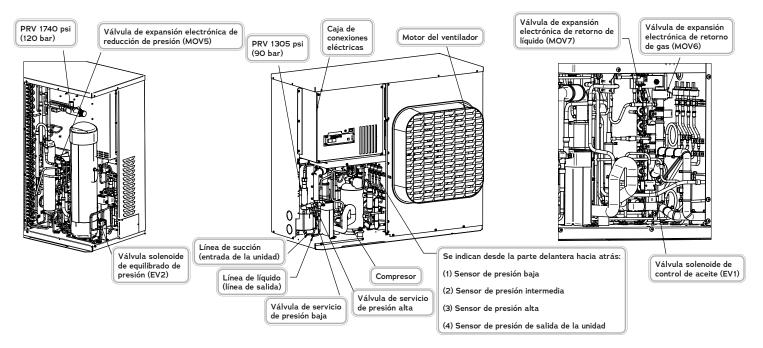
CALIDAD DEL REFRIGERANTE CO2

El dióxido de carbono comprado para el uso en sistemas de refrigeración debe ser lo suficientemente puro como para evitar la acumulación de gases incondensables y humedad. La acumulación de estos gases puede bloquear los orificios pequeños, como las válvulas de expansión, o aumentar la presión de descarga, lo que disminuye el rendimiento o deja inoperativo el sistema.

El CO_2 se encuentra disponible comercialmente a varios niveles distintos de pureza. Los nombres comunes y el porcentaje de pureza se indican a continuación. Hussmann recomienda utilizar CO_2 de calidad de refrigeración (99.99% de pureza).

Grado	Pureza
Grado industrial	99.5%
Totalmente seco (mínimo aceptable)	99.8%
Grado anaeróbico	99.9%
Calidad de refrigeración (recomendado por Hussmann)	99.99%
Grado Coleman (instrumento)	99.99%
Grado de investigación	99.999%
Grado ultra puro	99.9999%

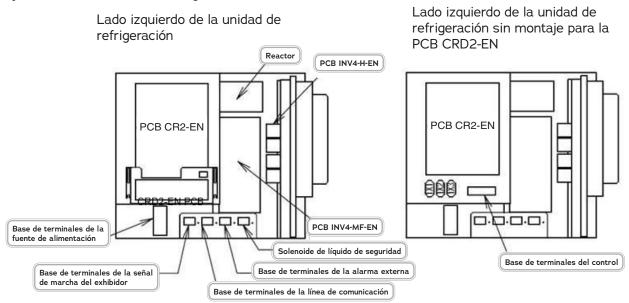
*El CO ₂ de grado médico no se debe usar,
debido a los reguladores de presión
de salida típicamente presentes en los
tangues.


*El grado de pureza totalmente seco es el mínimo aceptable para garantizar el funcionamiento adecuado del equipo y es lo suficientemente puro como para evitar la acumulación de gases incondensables en el sistema.

Artículo	Especificaciones
Pureza	> 99.9 % (volumen)
Humedad	< 0.005 % (volumen)
Azufre total	< 0.03 ppm (peso)
Gas inerte (H ₂ , N ₂ , O ₂ , Ar)	< 0.01 % (volumen)

Se admite la mezcla de grados de pureza de CO_2 más altos. Las calidades más bajas de CO_2 contienen niveles más altos de contaminantes y agua y pueden disminuir el rendimiento del sistema. Los niveles más altos de humedad pueden reaccionar con el CO_2 y formar ácido carbónico, que puede degradar la integridad de los componentes. Hussmann recomienda mantener en el lugar suficiente CO_2 de calidad de refrigeración para cargar el sistema.

Uno de los beneficios del CO₂, en comparación con los productos sintéticos, es la alta densidad del vapor. El CO₂ para bajas temperaturas es aproximadamente cinco veces más denso, lo que se traduce en tubos de succión de menor tamaño que otros refrigerantes sintéticos.


COMPONENTES

NOTA:

Se debe instalar una válvula de alivio de presión (PRV, por sus siglas en inglés) en la línea de succión para proteger el evaporador. El ajuste de presión de la PRV debe ser el mismo que la presión nominal del evaporador o los evaporadores.

Disposición interna de la caja de conexiones eléctricas

NOTA

El filtro de la línea de succión y el filtro secador de la línea de líquido son accesorios estándar que se envían sueltos. La unidad de refrigeración contiene válvulas de alivio de presión estándar.

RANGOS DE FUNCIONAMIENTO

Esta unidad de refrigeración funciona con un compresor rotativo.

Utilice la unidad de refrigeración dentro del rango que se muestra a continuación.

Artículo	Valor estándar Unidades imperiales y del Sistema Internacional	Comentarios
Refrigerante	R-744	La cantidad de suministro de carga debe ser adecuada
Temperatura de evaporación	-40 °F a 23 °F -40 °C a -5 °C	Conversión de la presión de entrada a temperatura
Presión de succión	105.9 psig a 427.9 psig 0.73MPa a 2.95MPa	Presión de entrada de la unidad
Velocidad de rotación del compresor	40 s-1 a 80 s-1 2400 a 4800 RPM	* RPM
Temperatura de gas de succión	64.4 °F o inferior 18 °C o inferior	Temperatura del tubo de entrada de la unidad (gas de succión)
Sobrecalentamiento en la succión del compresor	18 °F (10 K) o superior	Diferencia entre la temperatura de evaporación y la temperatura de entrada del compresor
Presión de descarga	1,319.8 psig o inferior 9.1 MPa o inferior (excepto transitoria)	Presión de salida del compresor
Temperatura del gas de descarga	239 °F o inferior 115 °C o inferior	Temperatura de salida del compresor
Temperatura de aceite	212 °F o inferior 100 °C o inferior (Temperatura ambiente +10 K (18 °F) o superior)	
Temperatura ambiente	-4 °F a 113 °F -20 °C a 45 °C	Temperatura del aire de entrada al enfriador de gas
Fuente de alimentación	208 V / trifásico / 60 Hz	Dentro de ± 10% del voltaje nominal
Ángulo de inclinación de la instalación	1 grado o inferior	
Periodo del ciclo de encendido/apagado	10 minutos o más para el ciclo de encendido/apagado	Debe garantizarse el retorno del aceite
Instalación	Exterior	La base debe ser lo suficientemente rígida
Peso neto	329 lb (149 kg)	
Enfriador intermedio	1.97 galones (7.45 litros)	
Carga máxima de refrigerante para todo el sistema de refrigeración	17.6 lb (8.0 kg)	La cantidad de carga adecuada se debe calcular con la herramienta proporcionada por Panasonic

NOTA:

El instalador es el único responsable de la seguridad y el cumplimiento normativo de la instalación.

CONTRAMEDIDAS PARA EL FUNCIONAMIENTO EN CLIMAS FRÍOS

Puede ser necesario un cerramiento para la unidad de refrigeración con el fin de evitar una reducción excesiva de la presión alta en un lugar con clima frío.

ESPECIFICACIONES NOMINALES

Artículo	Clasificación		Unidad
Fuente de alimentación	208 V / trifásico / 60 Hz		V
	Temperatura de evaporación		
	-20 °F	+23 °F	
Capacidad de enfriamiento	13,826	20756	BTU/H
Alimentación	4.12	3.86	kW
Corriente	11.4	10.7	Α

Condiciones:

1. Temperatura de evaporación: -20 °F (-29 °C) , +23 °F (-5 °C)

2. Temperatura ambiente: 95 °F (35 °C)

3. Velocidad de rotación del compresor: 79 s-1

4. Sobrecalentamiento de la succión del compresor: 18 °F (10° K)

RENDIMIENTOS

Temperatura ambiente	Artículo	Símbolos	Temperatura de evaporación 14 °F (-10 °C)	Temperatura de evaporación -31 °F (-35 °C)	Unidad
	Capacidad nominal de enfriamiento	Q	15607 (4.57)	9760 (2.86)	Btu/h (kW)
109.4 °F (43 °C)	Potencia nominal de entrada	Р	3.98	4.34	kW
	Coeficiente de rendimiento (COP) nominal	EER	3.92	2.25	(Btu/h)/W
	Capacidad nominal de enfriamiento	Q	23427 (6.87)	12099 (3.55)	Btu/h (kW)
89.6 °F (32 °C)	Potencia nominal de entrada	Р	4.40	3.89	kW
	Coeficiente de rendimiento (COP) nominal	EER	5.32	3.11	(Btu/h)/W
	Capacidad nominal de enfriamiento	Q	25498 (7.47)	12885 (3.78)	Btu/h (kW)
77 °F (25 °C)	Potencia nominal de entrada	Р	4.14	3.58	kW
	Coeficiente de rendimiento (COP) nominal	EER	6.16	3.60	(Btu/h)/W
	Capacidad nominal de enfriamiento	Q	27141 (7.95)	13655 (4.00)	Btu/h (kW)
59 °F (15 °C)	Potencia nominal de entrada	Р	3.29	2.87	kW
	Coeficiente de rendimiento (COP) nominal	EER	8.25	4.76	(Btu/h)/W
	Capacidad nominal de enfriamiento	Q	28430 (8.33)	14390 (4.22)	Btu/h (kW)
41 °F (5 °C)	Potencia nominal de entrada	Р	2.44	2.13	kW
	Coeficiente de rendimiento (COP) nominal	EER	11.65	6.76	(Btu/h)/W

^{*} Sobrecalentamiento de la succión: 18 °F (10K)

NIVEL DE PRESIÓN SONORA

El nivel de presión sonora ponderado en A es de 70 dB. (a una distancia de 1 m de la superficie del producto)

INSTALACIÓN DE LA UNIDAD

PRECAUCIONES PARA LOS TRABAJOS DE INSTALACIÓN

Esta unidad de refrigeración ha sido diseñada exclusivamente para R744 (refrigerante CO₂). El aceite refrigerante y cada uno de los componentes, incluido el compresor, han sido diseñados exclusivamente para la unidad de refrigeración.

Por favor, tome las precauciones necesarias para mantener la fiabilidad del producto.

- Dado que el refrigerante CO₂ adquiere una presión alta durante el funcionamiento, se usan materiales de tuberías y otros componentes con suficiente resistencia, diseñados principalmente para CO₂.
 Se recomiendan los tubos Wieland K65, Mueller XHP o equivalentes para la instalación y reparación en el local. Los accesorios de cobre-hierro Mueller XHP tienen una presión nominal de 1885 PSI a 250 °F o 120 °C.
- Como el aceite de refrigeración absorbe la humedad, el tiempo de apertura debe ser lo más corto
 posible. La conexión de las tuberías a la unidad de refrigeración debe realizarse en la última etapa de
 los trabajos de instalación de las tuberías. Evite los trabajos al aire libre en días lluviosos.
- Para los trabajos de tuberías, use tubos de cobre aptos para refrigeración XHP, K65 u otros que tengan una presión nominal adecuada para CO₂, limpios y secos, y aleación de plata al 45% y fundente en pasta en todas las uniones a soldar. No use ningún fundente que contenga cloro. Durante la soldadura de tubos, es imprescindible que haya sobrepresión de nitrógeno para evitar la oxidación.
- No utilice uniones de tubos fabricadas para refrigerante HFC porque no tienen la resistencia necesaria. Además, no utilice uniones abocinadas.
- Para proteger la unidad de refrigeración y el ciclo de refrigeración, instale el filtro secador incluido en la línea de líquido de la unidad de refrigeración. Instale también el filtro de succión en la línea de succión. Hussmann enviará el filtro/secador de la línea de líquido y el filtro de succión para instalarlo en el local.
- El detector de fugas de gas para las pruebas de estanqueidad debe ser líquido espumoso o agua jabonosa. No utilice detergente de cocina. El detergente de cocina puede corroer los metales.

USO ECONÓMICO DE LA UNIDAD DE REFRIGERACIÓN

Para utilizar la unidad de refrigeración de forma económica, tenga en cuenta lo siguiente:

La capacidad de enfriamiento varía en gran medida según el método de uso. Cuando la temperatura de evaporación desciende 1.8 °F, la capacidad de enfriamiento disminuye entre un 3 y un 4%, y un aumento de la presión de descarga disminuye la capacidad de enfriamiento y aumenta el consumo de energía.

Para obtener el máximo rendimiento de la unidad, la presión de succión del compresor debe aumentarse al máximo, y la presión de descarga debe ser lo más baja posible. Por este motivo, se debe tener precaución en los siguientes puntos.

Haga que la resistencia de las tuberías sea lo menor posible.
 Ref: Tasa de cambio de capacidad por cada 1.8 °F (1 °C) de pérdida de carga de la línea de succión

Temperatura de evaporación	Tasa de cambio de capacidad por (1.8 °F) 1 °C
-40 °F a 23 °F (-40 °C a -5 °C)	3% a 4%

- 2. Seleccione un evaporador de capacidad suficiente para elevar al máximo la temperatura de evaporación.
- 3. No bloquee la salida de aire frío de un refrigerador o vitrina con alimentos.
- 4. Abra y cierre la puerta del refrigerador lo más rápido posible. (Para evitar que el aire frío se escape, reduzca el tiempo que la puerta permanece abierta)
- 5. El enfriador de gas se debe limpiar periódicamente para evitar obstrucciones.

PRECAUCIONES PARA UNA UNIDAD CONDENSADORA CON CO2 TRANSCRÍTICO

1. Incluso después de desconectar la alimentación, sigue habiendo voltaje en los capacitores. Se necesitan aproximadamente 5 minutos hasta que el LED (rojo) de la PCB INV4-H EN se apague (hasta que los capacitores descarguen el potencial). No toque ningún componente hasta que se haya descargado todo el voltaje.

El indicador LED rojo indica peligro de alto voltaje.

- 2. Para evitar el ruido del inversor, manténgalo a la mayor distancia posible de los cables de un receptor de radio o fuente de emisión cableada. El ruido del inversor puede causar un sonido no deseado.
- 3. El mecanismo de compresión de dos etapas evita el aumento de temperatura del gas de descarga de la segunda etapa del compresor.
- 4. Durante el funcionamiento con una pequeña cantidad de refrigerante en el circuito de refrigeración, un dispositivo de protección (la PCB CR2- EN) detiene el compresor. Evite el funcionamiento con una cantidad insuficiente de refrigerante.
- 5. Los compresores rotativos constan de componentes de alta precisión. Tenga cuidado durante los trabajos en las tuberías para evitar la contaminación con polvo, polvo metálico, incrustaciones de óxido, etc.

NOTA: Es fundamental que las unidades con inversores tengan la cantidad correcta de aceite.

La carga inicial de aceite de la unidad de fábrica se muestra en la tabla siguiente.

Número de modelo	Compresor	Separador de aceite
OCU040xxx	20.3 oz liq. estadounidenses (600 ml)	18.6 oz liq. estadounidenses (550 ml)

Tipo de aceite PZ-68S

APRECAUCIÓN

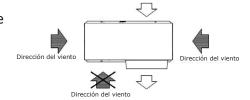
» Cuando agregue o cambie el aceite, asegúrese de utilizar el aceite especificado (PZ-68S) que se detalla en la sección Accesorios opcionales de este manual.

El compresor tiene 0.634 qt (600 ml) de aceite. Al separador de aceite se le agregan de fábrica otros 0.581 qt (550 ml). El aceite se agrega al separador de aceite en la parte superior antes de la soldadura final de los tubos. Es posible que se necesite aceite adicional para un tramo de tubería mayor de 164 pies (50 metros).

A continuación, se muestra un ejemplo para calcular la cantidad adicional de aceite que es necesario agregar para la carga inicial:

7 cc/m para la longitud excedente respecto a la longitud máxima de tubería = 0.00225 qt/pie (2.13 ml/pie).

Ejemplo para unidades de 4 hp:


Si la longitud es de 200 pies, se debe agregar (200 - 164) pies \times 0.00255 gt (2.13 ml)/pie = 0.081 gt (77 ml).

Si se requiere una longitud excesiva (>200 pies) para la instalación, consulte primero a su representante de Hussmann para evitar problemas de pérdida de carga. También existe una herramienta de cálculo en línea (https://www.hussmann.com/ns/Technical-Documents/OCU_Charge_Calculation_Tool.xlsx) para los que ya conocen las especificaciones de su sistema y simplemente necesitan hacer el cálculo.

SELECCIÓN DEL LUGAR DE INSTALACIÓN

Cada unidad del equipo debe colocarse eligiendo la ubicación más conveniente que facilite la instalación, la operación y el mantenimiento.

- 1. Cada unidad debe colocarse de forma que la longitud de las tuberías y los cables sea lo más corta posible y que simplifique la instalación.
- 2. El controlador debe estar situado al alcance de la mano del usuario para realizar cómodamente las operaciones de rutina (MARCHA, PARADA, restablecer advertencia, etc.). No ubique el controlador en un lugar de fácil acceso para personas ajenas al usuario.
- 3. Instale la unidad de refrigeración en un lugar accesible para el servicio y la inspección diarios. El mantenimiento y la inspección de rutina implican controlar la presión de funcionamiento y el estado de funcionamiento del compresor para detectar ruidos o vibraciones anormales.
 - Lugar que no moleste a los demás: evite que el flujo de aire del enfriador de gas cause molestias
 - Lugar con una superficie firme y nivelada
 - Instale la unidad de refrigeración sobre una base firme para evitar mayor ruido y vibraciones, sobre todo si se encuentra en el límite del terreno de un vecino. Cumpla siempre las leyes y normativas regionales.
 - Lugar alejado de fuentes de calor
 - La instalación no debe verse afectada por la reflexión del suelo.
 - Lugar con buena ventilación
 - Para asegurar una buena ventilación, el lugar de instalación debe proporcionar la entrada de aire por el enfriador de gas a 113 °F (45 °C) o menos con un buen flujo de aire.
 - La ubicación no se ve afectada si el suelo está mojado.
 - La unidad de refrigeración se suele ver afectada por el agua de lluvia y el agua de drenaje del deshielo. Realice los trabajos de drenaje de agua necesarios.
 - La ubicación no se ve afectada por la acumulación de nieve.
 - En un lugar con clima frío, se debe suministrar un techo para evitar la acumulación de nieve y la formación de escarcha o la congelación.
 - Dirección para evitar vientos fuertes
 - Instale la unidad de refrigeración con el lado de salida de aire orientado de forma perpendicular a la dirección del viento.

COLOCACIÓN DE LA UNIDAD DE REFRIGERACIÓN

Transportar la unidad:

- 1. Transporte la unidad de refrigeración con cuidado, manteniendo su posición vertical.
- 2. Cuando traslade la unidad de refrigeración con un montacargas, utilice los orificios cuadrados de las esquinas de la base de la unidad para asegurarla y mantenerla en posición vertical.

Suspender la unidad:

- 1. Cuando suspenda la unidad de refrigeración, siga las "Precauciones para izar el producto" adjuntas a la unidad de refrigeración.
- 2. Cuando suspenda y mueva la unidad de refrigeración, manténgala nivelada y evite golpes que puedan dañarla.
- 3. Las cuerdas, correas, etc., deben ser lo suficientemente fuertes como para soportar fácilmente el peso de la unidad de refrigeración.

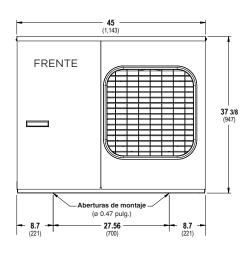
TRABAJOS RELATIVOS A LA BASE/PLATAFORMA

- Como referencia, la base debe ser de hormigón, que tiene una masa unas tres veces superior a la de la unidad de refrigeración (absorbe las vibraciones por la masa).
- Las vibraciones deben reducirse mediante una plataforma o una almohadilla antivibración para evitar la transmisión de vibraciones al suelo y a la pared.
- Asegure la unidad de refrigeración mediante pernos de anclaje para evitar que se caiga (utilice todas las posiciones de fijación).
- La unidad de refrigeración se debe instalar con un ángulo de inclinación de 1º o menos.
- La unidad de refrigeración se debe instalar por debajo de los 6562 ft (2000 m) de altitud.

Si no se puede garantizar una base que cumpla los requisitos anteriores, asegúrese de que no se generen vibraciones anormales al resonar la unidad de refrigeración y el sistema de tuberías.

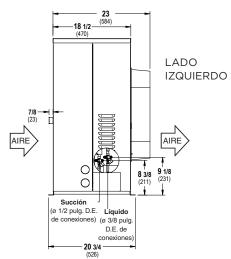
1. Trabajos básicos relativos a la base cuando el tubo se extiende horizontalmente.

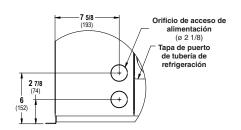
En una base de hormigón a 5.9 pulgadas (150 mm) o más de la superficie del suelo, coloque almohadillas antivibración de 0.31 a 0.59 pulgadas (8 a 15 mm) de espesor aproximadamente, y asegure la unidad en toda la base con pernos de anclaje.


2. Trabajos básicos relativos a la base cuando el tubo se extiende hacia abajo.

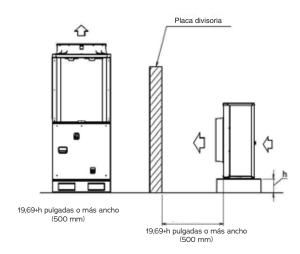
Forme una base elevada con columnas verticales. Coloque una almohadilla antivibración (de 0.31 a 0.59 pulgadas (8 a 15 mm) de espesor) en toda la superficie de la base y asegúrela con pernos de anclaje.

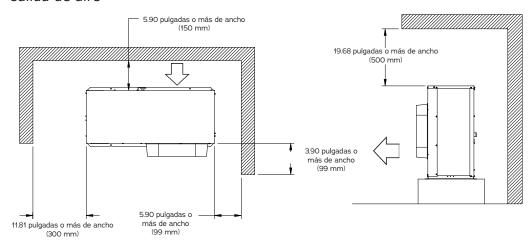
3. Pernos de anclaje


Use pernos de anclaje de 7/16 (5 mm) e introdúzcalos al menos 3.94 pulgadas (100 mm) en la base de hormigón. Fije la unidad con tuercas dobles y arandelas planas con un diámetro exterior mínimo de 1.1 pulgadas (28 mm).


DIMENSIONES EXTERNAS

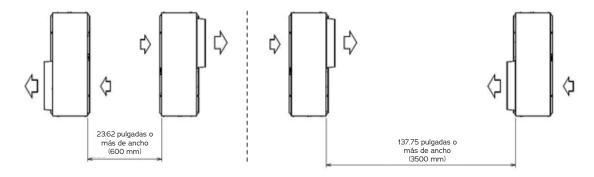
8.7 0.47 (700) 0.47 (221) 0.74 (12) (13) (13) (221) 0.74 (505) (505) 0.47 (12) 0.47 (1


(Las dimensiones externas de la unidad se indican en pulgadas)

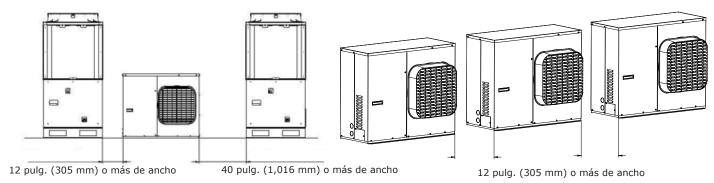


Adaptador de la válvula de servicio
Tuerca (par de apriete 13 ± 1 Nm)

EJEMPLOS DE INSTALACIÓN



Cuando no exista ninguna obstrucción del lado de salida de aire (Las dimensiones externas de la unidad se indican en pulgadas)


Cuando se instala junto a una unidad de refrigeración con salida de aire por la parte superior

En caso de instalación frente a frente

Cuando se instala junto a una unidad de refrigeración con salida de aire por la parte superior

Instalación lado a lado

Evite que el aire caliente de la salida entre directamente en el intercambiador de calor de la unidad de refrigeración con salida de aire por la parte superior.

TRABAJO EN LAS TUBERÍAS DE REFRIGERANTE

El diseño y la instalación de las tuberías de refrigerante afectan directamente el rendimiento de la unidad de refrigeración, así como la vida útil del producto y la aparición de problemas.

Selección de las dimensiones de las tuberías de refrigerante

Las dimensiones de las tuberías de conexión para la unidad de refrigeración son, en principio, las que se muestran a continuación, pero se debe determinar cada una calculando la pérdida de carga de la tubería y la velocidad de flujo del refrigerante y asegurándose de que no se produzca ningún problema en la capacidad de enfriamiento y el retorno de aceite.

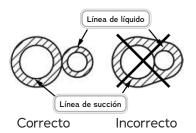
Como la unidad de refrigeración que utiliza refrigerante CO₂ se somete a una presión mayor que cuando se utiliza refrigerante HFC, es necesario elegir los materiales adecuados.

Número de modelo	Línea de succión (entrada de la unidad)	Línea de líquido (salida de la unidad)
OCU040xxx	Ø 1/2 pulg. (Ø 12.7 mm)	Ø 3/8 pulg. (Ø 9.52 mm)

NOTA: Soldadura realizada en el diámetro externo. La longitud máxima es de 164 pies o 50 m.

- El material de la tubería debe ser XHP, K65 u otro tubo de cobre apto para refrigeración que tenga una presión nominal adecuada para CO₂.
- Al cortar el tubo, utilice un cortatubos y elimine siempre las rebabas.
- Cuando doble el tubo, asegúrese de que el radio de curvatura sea cuatro veces o más que el diámetro exterior. Durante el curvado, preste atención a la distorsión y las marcas.
- Cuando la longitud de la conexión de la línea de succión sea de 49 pies (15 m) o inferior, aumente el tamaño de la tubería en una graduación para mejorar el funcionamiento en el arranque de la unidad de refrigeración.
 (Dimensión de la tubería de la línea de succión: Ø0.50 pulgadas (Ø 12.7 mm) a Ø0.625 pulgadas (Ø 15.88 mm).

APRECAUCIÓN


» Abra el puerto de servicio de presión alta y después el de presión baja para evitar la pérdida de aceite. La liberación rápida de refrigerante podría hacer que saliera aceite refrigerante junto con el refrigerante.

▲PRECAUCIÓN

» Tome las precauciones necesarias al manipular las tuberías sellando el extremo de la tubería con cinta adhesiva o cualquier otra cubierta para evitar el ingreso de contaminantes y humedad en la tubería.

PRECAUCIONES PARA LOS TRABAJOS DE AISLAMIENTO TÉRMICO

- Aplique aislamiento térmico en la línea de succión y en la línea de líquido para evitar los efectos térmicos del exterior.
- No envuelva la línea de succión y la línea de líquido juntas con material de aislamiento térmico. (Consulte la ilustración)
- Aplique el aislamiento térmico solo después de realizar las pruebas de estangueidad y de presión.

Evite la contaminación de objetos extraños como polvo, polvo metálico, incrustaciones de óxido, etc. Dado que el compresor está formado por componentes de alta precisión, los contaminantes generan rayones en las superficies de deslizamiento, lo que aumenta las fugas de gas, disminuye el rendimiento y provoca un desgaste excesivo y agarrotamiento.

- Haga pasar gas nitrógeno durante la soldadura.
- Las tuberías interiores y exteriores deben estar limpias.
- Evite mezclar residuos durante el corte.

Las pruebas de estanqueidad solo deben ser realizadas por personal de servicio capacitado conforme a la normativa.

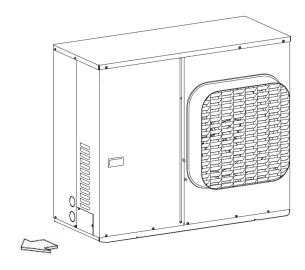
Lado del líquido	Lado de succión
(Lado de presión alta)	(Lado de presión baja)
1,015 psig (7 MPa)	1,015 psig (7 MPa)

NOTA:

Utilice N2 para la prueba de estanqueidad

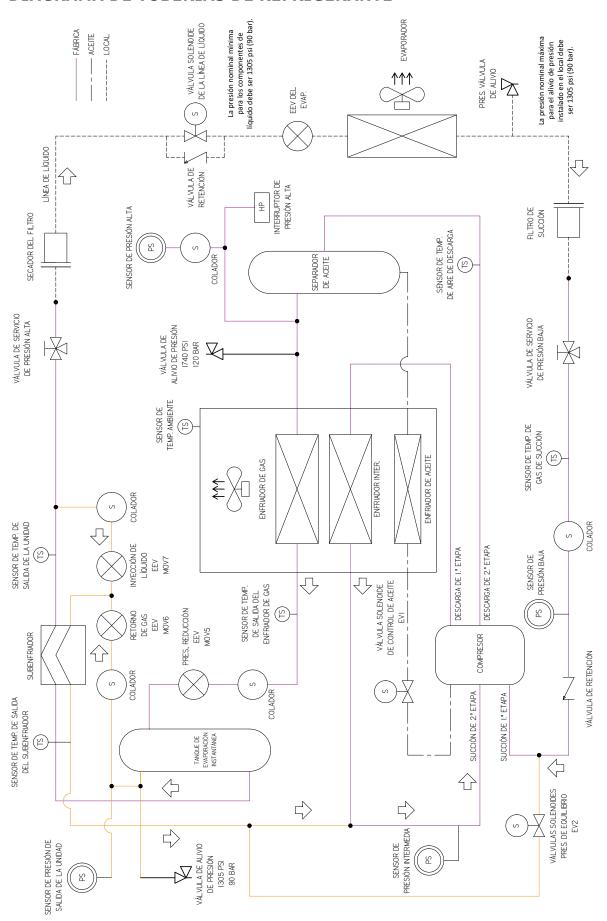
Precaución por fuga de gas

Las fugas de gas pueden provocar el calentamiento excesivo del compresor y el funcionamiento con mezcla de aire, lo que hace que el compresor falle.


- Realice la prueba de estanqueidad de forma segura.
- Consulte los procedimientos de la prueba de estanqueidad en la sección Servicio.

Dirección de la tubería

La tubería puede conectarse desde una dirección (el lado izquierdo de la unidad de refrigeración).


Cuando conecte la tubería de refrigerante, retire el panel lateral izquierdo.

Filtro/secador de la línea de líquido y filtro de la línea de succión

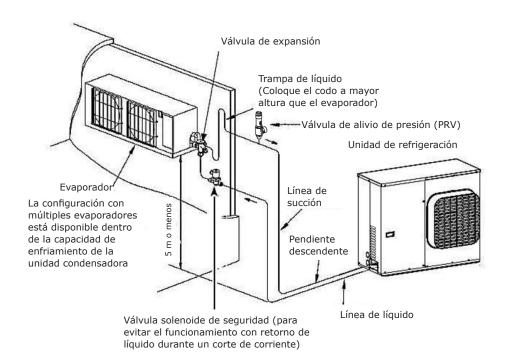
El filtro/secador de la línea de líquido y el filtro de succión son piezas que se envían sueltas de fábrica para instalarlas en el local.

DIAGRAMA DE TUBERÍAS DE REFRIGERANTE

REQUISITOS DE LOS COMPONENTES DE LA VÁLVULA DE ALIVIO Y EL EVAPORADOR

Está previsto que este equipo se use con componentes del sistema aptos para R744 (dióxido de carbono) que tengan una presión alta de diseño de 1740 psi (120 bar) y una presión baja/intermedia de diseño de 1305 psi (90 bar). El lado de presión alta de la unidad del sistema está protegido con una válvula de alivio con presión nominal de 1740 psi (120 bar) y el tanque flash está protegido con una válvula de alivio con presión nominal de 1305 psi (90 bar). El local debe proporcionar válvulas de alivio o de regulación de presión en cantidad suficiente que tengan la capacidad que se considere adecuada para proporcionar protección a los componentes del evaporador. La presión nominal máxima para el alivio de presión instalado en el local debe ser 1305 psi (90 bar). Por ejemplo, si el evaporador tiene una presión nominal de 870 psig (60 bar), se deberá instalar una válvula de alivio de presión de 870 psi (60 bar) en la línea de succión. La presión nominal mínima para los componentes de líquido debe ser 1305 psi (90 bar).

Puede ser necesario prever un número suficiente de válvulas de alivio y reguladora de presión en función de la capacidad del sistema y situarlas de forma que no haya ninguna válvula de cierre entre las válvulas de alivio y las partes o la sección del sistema que se está protegiendo.

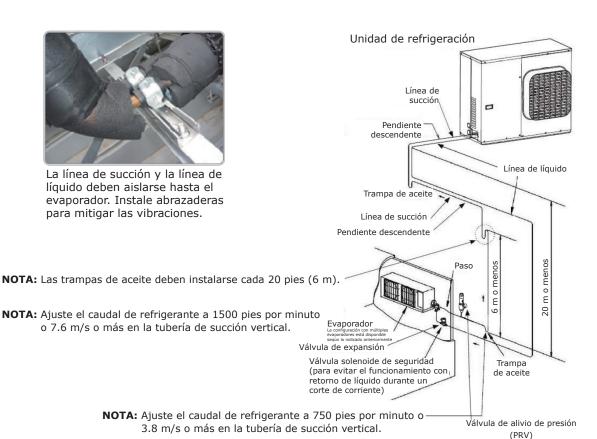

PRECAUCIÓN: Si el sistema de refrigeración está desenergizado, puede producirse el escape de R-744 (CO_2) a través de las válvulas de alivio reguladoras de presión del sistema de refrigeración. En tales casos, puede ser necesario recargar el sistema con R-744 (CO_2), pero en cualquier caso, las válvulas de alivio reguladoras de presión no deben anularse ni taparse. No se debe alterar el ajuste de alivio.

Cuando el evaporador se sitúa a mayor altura:

La longitud total de las tuberías debe limitarse a 164 pies (50 m) en un sentido. Si supera los 164 pies, consulte con la fábrica para evitar la pérdida de carga y problemas adicionales con el aceite.

Diferencia de altura de 16.4 pies (5 m) o menos

- Lo ideal es que la línea de succión tenga una pendiente suave hacia la unidad. La pendiente recomendada es de 1/200–1/250.
- La tubería de refrigerante debe cubrirse con material de aislamiento térmico tanto en la línea de succión como en la de líquido.



Cuando el evaporador se sitúa a menor altura:

Diferencia de altura de 65½ pies (20 m) o menos

Para promover un buen retorno de aceite en la línea de succión, es necesario tener en cuenta el tamaño de la tubería y la trampa.

- Lo ideal es que la línea de succión tenga una pendiente suave hacia la unidad.
 La pendiente recomendada es de 1/200-1/250.
- La tubería de refrigerante se debe cubrir con material de aislamiento térmico tanto en la línea succión como en la de líquido.

CARGA DE REFRIGERANTE

Evacuación (realizar después de terminar las conexiones eléctricas).

La unidad se envía precargada con aproximadamente 10 psig de CO₂ para evitar la entrada de aire y humedad en el sistema.

Segue al vacío todo el circuito utilizando una bomba de vacío antes de cargar el refrigerante para evitar que ingrese aire o humedad en el sistema de refrigeración. Después de realizar la prueba de estangueidad de forma segura, ejecute la evacuación siguiendo el procedimiento.

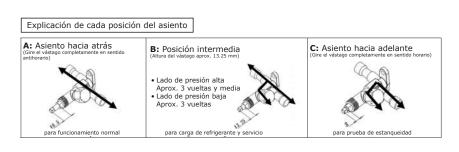
- 1. Conecte los cables eléctricos. Asegúrese de que todas las conexiones de los cables estén firmes.
- 2. En el modo de evacuación, todas las válvulas de expansión electrónicas y las válvulas solenoides están abiertas.

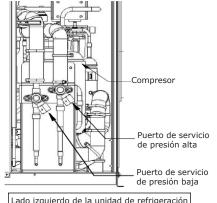
Entre en el modo de evacuación siguiendo esta secuencia:

- Verifique que el disyuntor eléctrico esté apagado (no se suministra energía eléctrica a la unidad)
- Encienda el interruptor N.º 1 del interruptor DIP de 8 posiciones (SW13). Los interruptores N.º 2 a 8 deben estar apagados.
- Coloque el interruptor deslizante (SW15) en la posición [CHECK] (VERIFICACIÓN).

Luego,

- Encienda el disyuntor eléctrico.
- Encienda el interruptor de funcionamiento (S1).
- Ajuste el interruptor giratorio (SW11) en [OPERATION] (FUNCIONAMIENTO)
- Verifique que la pantalla indique [uAcU].


La pantalla indicará


"Presión baja » Presión alta » Presión de salida de la unidad » [uAcU] » Presión baja »"

- Verifique que el interruptor de funcionamiento (S1) esté encendido. (aunque la pantalla muestre [uAcU], la unidad no está en el modo de evacuación si (S1) está apagado)

3. Evacuación

- Conecte el manómetro de vacío y la bomba de vacío a los puertos de servicio de presión baja y presión alta, y ajuste ambos a la "posición intermedia".
- Aplique la evacuación desde los dos puertos.
- Evacúe hasta el nivel objetivo de evacuación de 500 micras (66 Pa), y continúe durante 1 a 3 horas.
- Realice la carga de refrigerante inmediatamente después de la evacuación, según el procedimiento de carga descrito en la página siguiente.

Lado izquierdo de la unidad de refrigeración

MÉTODO DE CARGA

Realice la carga de refrigerante inmediatamente después de la evacuación. Debe utilizarse R744 (CO₂); no lo mezcle con ningún otro refrigerante. El refrigerante debe cargarse de acuerdo con el siguiente procedimiento.

- 1. Preparación (La unidad debe estar en el modo de evacuación)
 - Cierre la válvula de vacío del juego de manómetros exclusivo para refrigerante CO₂ y separe la bomba de vacío.
 - Coloque el cilindro de refrigerante sobre la balanza de plataforma y elimine el aire del tubo. La balanza de plataforma debe estar sobre una superficie plana y se debe ajustar el cero.
- 2. Carga inicial (La unidad debe estar en modo de vacío)
 - Verifique que los puertos de servicio de presión baja y presión alta estén abiertos para cargar el refrigerante.
 - Abra ligeramente la válvula de carga del colector para cargar el refrigerante por encima de 100 psi (0.7 MPa).

APRECAUCIÓN

- » Nunca cargue CO₂ líquido hasta que la presión alcance 100 psi (0.7 MPa) para evitar la formación de hielo seco.
- 3. Carga adicional (la unidad debe estar en modo normal)
 - Abra el puerto de servicio de presión alta. El puerto de servicio de presión baja permanece cerrado.
 - Coloque el interruptor deslizante (SW15) en [CONTROL].
 - Apague el interruptor N.º 1 del interruptor DIP de 8 posiciones (SW13). El interruptor N.º 2 debe permanecer encendido.
 - Encienda el interruptor de funcionamiento (S1) y deje que el compresor arranque.

Abra ligeramente la válvula del cilindro para que la unidad aspire el refrigerante del puerto de servicio de presión alta. Continúe cargando hasta llegar a la cantidad de refrigerante deseada (la cantidad cargada puede verificarse con una balanza). Cierre el puerto de servicio de presión alta para completar la carga.

- 4. Cantidad de carga:
 - Para calcularla, póngase en contacto con su ingeniero de aplicaciones de Hussmann o utilice la herramienta de cálculo en línea (https://www.hussmann.com/ns/Technical-Documents/OCU_Charge_Calculation_Tool.xlsx) si ya conoce todas las especificaciones del sistema y solo necesita realizar el cálculo. Deberá proporcionar la siguiente información: tamaño y longitud de la línea (líquido y succión), modelo de evaporador (para el volumen asociado), temperatura de evaporación y temperatura ambiente máxima prevista.

NOTA:

- a. No carque refrigerante líquido por el lado de presión baja (puerto de servicio de presión baja).
- b. Para evitar la sobrecarga, la velocidad de carga debe ser de alrededor de 0.7055 oz / 5 s (20 g por 5 s).
- c. Si resulta difícil ajustar la velocidad de carga de refrigerante accionando la válvula de unión y la válvula de carga del juego de manómetros, conecte un tubo capilar entre el cilindro de refrigerante y el juego de manómetros.
- d. No conecte un tubo capilar entre el juego de manómetros y el adaptador de la válvula de servicio.

La cantidad de refrigerante debe ajustarse conforme a lo indicado en "Ajuste de la cantidad de refrigerante de la unidad de refrigeración" en la sección "Ajuste durante el funcionamiento".

- 5. Después de finalizar el ajuste de la cantidad de refrigerante, cierre la válvula del cilindro de refrigerante y compruebe que los puertos de servicio de presión baja y presión alta estén cerrados.
- 6. Abra lentamente la válvula de vacío o el puerto de purga del juego de manómetros para que salga el refrigerante restante en el adaptador de la válvula de servicio y el juego de manómetros.

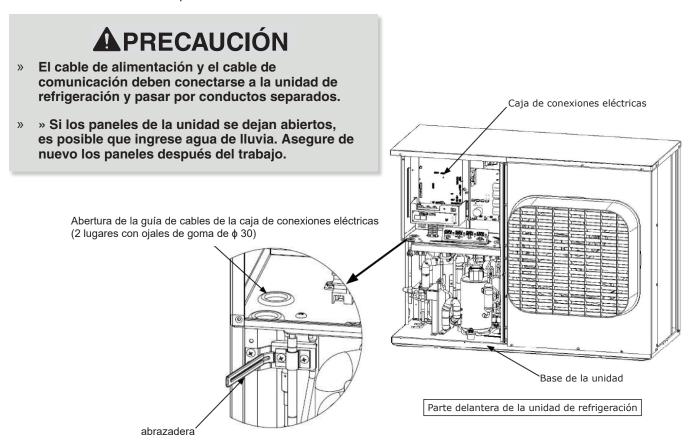
 Nota: Dado que el refrigerante se enfría al salir, tenga cuidado al abrir la válvula para evitar que se congele.
- 7. Después de terminar la operación, verifique que los prensaestopas de las válvulas de servicio de presión baja y presión alta estén bien apretados y apriételos si es necesario. El par de apriete es de 88 ± 17 lb-pulg. (10 ± 2 Nm).

TRABAJOS DE CONEXIONES ELÉCTRICAS

Los componentes de la unidad condensadora se cablean en fábrica de la forma más completa posible con todos los trabajos realizados de acuerdo con el archivo UL. Todas las desviaciones requeridas por los códigos eléctricos aplicables serán responsabilidad del instalador. Las lengüetas principales en el panel de control del compresor están dimensionadas para cable de cobre únicamente, con un aislamiento para 75 °C. Todo el cableado debe cumplir los códigos eléctricos vigentes.

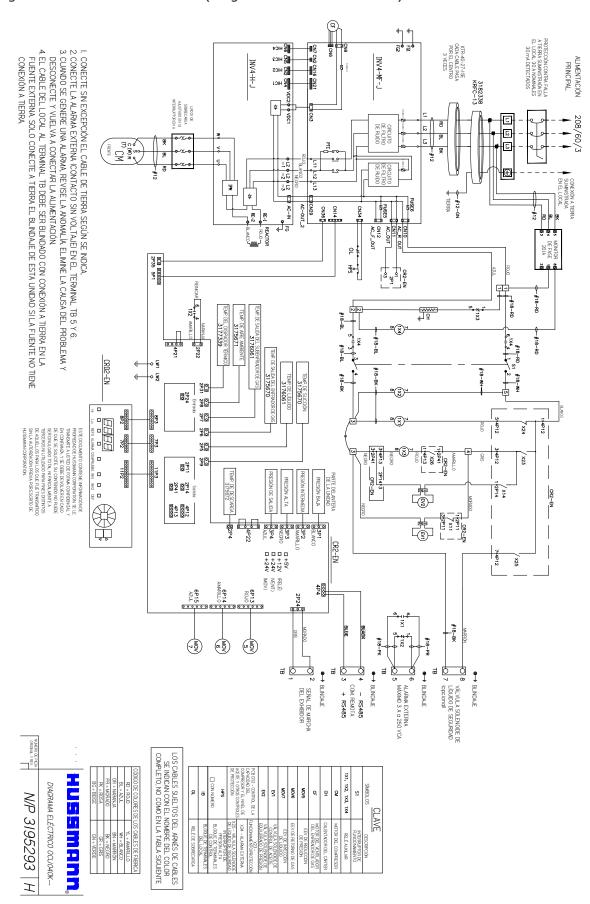
Consulte la placa del número de serie para determinar el calibre del cable (MCA) y la protección contra sobrecorriente (MOPD). Se requiere un interruptor de falla a tierra (GFI) proporcionado por el local; 30 A nominales, 30 mA detectados.

Utilice cable blindado conectado a tierra en la fuente externa para la válvula solenoide de líquido de seguridad, la alarma externa, la comunicación remota y la señal de marcha del exhibidor. El blindaje solo debe conectarse a la unidad si la fuente no tiene conexión a tierra.


La unidad tiene un puente instalado de fábrica (TB 1 y 2) que debe retirarse cuando se use la señal de marcha del exhibidor.

Conecte la alarma externa (contacto sin voltaje) en TB 5 y 6. La fuente de alimentación externa es de un máximo de 3 A a 250 VCA.

CABLEADO


La abertura de la guía de cables está en el lado izquierdo de la unidad de refrigeración.

- 1. Conecte los cables de alimentación y de tierra a través del ojal de goma de la parte posterior.
- 2. Conecte los cables blindados a través del ojal de goma de la parte delantera.
- 3. Utilice la abrazadera de la parte inferior de la caja de conexiones eléctricas para agrupar los cables anteriores de forma que no se doblen.

DIAGRAMA DE CIRCUITOS ELÉCTRICOS

Diagrama de circuitos eléctricos (diagrama eléctrico estándar)

GUÍA PREVIA AL ARRANQUE

Para obtener detalles específicos, como la ubicación, el funcionamiento y el ajuste adecuado, consulte la sección correspondiente de este manual

_					
Re	au	isit	OS	pre	vios

	Asegúrese de que todas las áreas de trabajo ofrezcan un entorno de trabajo seguro y de que no contengan escombros de construcción.
	El cliente o contratista debe proveer personal competente con las herramientas y equipos adecuados y estar presente en el lugar durante toda la visita del FQS.
	iberías, evacuación y carga
	Se terminaron todas las conexiones de tuberías en el local, incluidas las de los exhibidores, walk-ins, filtro/secador de la línea de líquido, filtro de succión, válvula solenoide con válvula de retención de derivación, etc.
	Las válvulas de alivio de presión del evaporador de montaje remoto deben instalarse según los detalles de instalación. Asegúrese de que todos los elementos que se envían sueltos estén instalados. Consulte las secciones correspondientes de este manual.
	Todas las tuberías deben someterse a una prueba de presión según los códigos locales.
	El sistema debe evacuarse, como se describe en la página 21 de este manual, hasta alcanzar 500 micras.
	Rompa el vacío del sistema utilizando cilindros de vapor de CO_2 (para evitar la formación de hielo seco) como se describe en este manual. Debe haber suficiente CO_2 disponible en el lugar, tanto en los tanques de líquido como en los de vapor, para cargar completamente el sistema. El CO_2 debe ser de calidad de refrigeración (99.9% de pureza) o superior. Consulte la hoja de cálculos de requisitos de carga en el enlace de la página 22 de este manual.
	Verifique la cantidad de la carga de aceite como se describe en la página 12 de este manual. Debe haber suficiente aceite disponible en el lugar para el arranque inicial y el primer cambio de aceite. Utilice únicamente el tipo de aceite designado para esta unidad.
Ur	nidad condensadora
	Revise todas las conexiones eléctricas del panel de control.
	Verifique la conexión y el voltaje antes de conectar la alimentación principal y el control a la unidad.
	Verifique que todos los sensores de temperatura estén midiendo correctamente en el controlador de la unidad condensadora exterior.
	Verifique que todos los transductores de presión estén midiendo correctamente en el controlador de la unidad condensadora exterior.
	Nota: Durante el proceso de evacuación, los transductores deben estar cerrados. Cuando se esté agregando carga de vapor, los transductores deben estar abiertos.
	Encienda el calentador del cárter del compresor de 1 a 3 horas antes del arranque del sistema.

VERIFICACIONES FINALES ANTES DEL FUNCIONAMIENTO

Confirme antes del funcionamiento:

- 1. Vuelva a revisar si existe algún cable conectado de forma incorrecta o suelto.
- 2. Verifique que todas las conexiones estén apretadas; que no haya fugas.
- 3. Abra completamente todas las válvulas de servicio.
- 4. Verifique que el voltaje de la fuente de alimentación esté dentro de $\pm 10\%$ del voltaje nominal.

Alimentación eléctrica del calentador del cárter

Durante la puesta en marcha inicial o durante un largo periodo de inactividad del compresor (sobre todo a baja temperatura ambiente) el calentador del cárter debe recibir corriente antes de encender el compresor. Esto evitará que el refrigerante se condense en el cárter y que el aceite forme espuma.

» Encender el GFI hace que se suministre corriente al calentador del cárter. No lo toque con la mano.

Protección de presión alta

El valor de referencia de la anomalía de la presión alta es de 1639 psi (11.3 MPa).

PUESTA EN MARCHA Y SECUENCIA DE FUNCIONAMIENTO

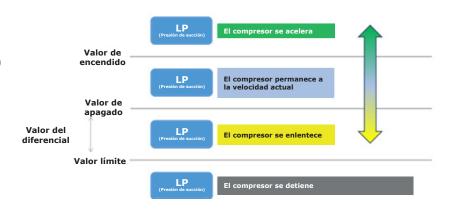
Generalidades

El controlador OCU TCO2 monitorea la presión de succión (presión baja/LP), la presión intermedia (IP), la presión de descarga (presión alta/HP), la presión del líquido (presión de salida/OP), la temperatura de descarga, la temperatura ambiente, la temperatura de salida del enfriador de gas, la temperatura del líquido (temperatura de salida de la unidad), la temperatura de retorno de la succión del subenfriador (salida dividida), la temperatura de succión y la temperatura del disipador térmico para controlar y emitir alarmas sobre el funcionamiento de la unidad.

El controlador gestiona el control del compresor.

El funcionamiento del enfriador de gas se basa en la presión alta y la temperatura ambiente. El controlador OCU modula la velocidad del ventilador del enfriador de gas mediante la diferencia de temperatura (TD) entre la temperatura de salida del enfriador de gas y la temperatura ambiente.

Compresor


<u>Arrangue</u>

Cuando se cumplan todas las condiciones que se indican a continuación, el compresor funcionará a 40 rps (velocidad mínima).

- El interruptor de funcionamiento está encendido
- No se ha producido ninguna anomalía/error/alarma
- El tiempo de parada forzada ha transcurrido
- Presión de succión ≥ Valor de encendido
- El OCU recibe la señal de solicitud de marcha
- El OCU está en modo de funcionamiento normal
- La salida de la válvula de solenoide de seguridad (X25) está activada

Velocidad

El punto de control de la velocidad del compresor es la presión de succión (LP). Hay tres parámetros (ENCENDIDO/ APAGADO/DIFERENCIAL) (ON / OFF / DIFF) para el ajuste de la presión de succión. El objetivo está entre el valor de ENCENDIDO y el valor de APAGADO. El compresor se acelerará cuando la presión de succión sea superior al valor de ENCENDIDO y se desacelerará cuando la presión de succión sea inferior al valor de APAGADO. Cuando la presión de succión esté por debajo del valor (APAGADO - DIFERENCIAL), el compresor se detendrá (velocidad cero).

Control de presión alta

La presión alta anormal se controla limitando los cambios de velocidad del compresor en las condiciones que se indican a continuación.

Presión alta	Salida
1639 psi ≤ HP	0 rps (el compresor se detiene)
1610 psi ≤ HP < 1639 psi	el compresor se desacelera, pero no por debajo de 40 rps
1581 psi ≤ HP < 1610 psi	aumento de velocidad prohibido

Control de la presión del líquido

Cuando la presión de salida de la unidad es anormalmente alta, la presión se reduce aumentando el valor de referencia de la presión alta, haciendo funcionar el ventilador a velocidad máxima y evitando la reducción de velocidad del compresor.

Presión del líquido	Valor de referencia de la presión alta	Velocidad del ventilador	Compresor	
1144 psi ≤ OP	aumentado (1522 psi máx.)	máximo de 800 rpm	reducción de velocidad prohibida	
OP < 986 psi	reducida hasta el ajuste normal	Vuelve al modo de funcionamiento normal		

Modo de vaciado por bombeo

Cuando se activa este modo, la unidad puede funcionar independientemente de la condición de la señal de funcionamiento. El compresor se encenderá para proteger los evaporadores, incluso sin que la señal de funcionamiento esté activada. El interruptor de funcionamiento debe estar encendido para que la unidad funcione en este modo. Cuando se activa este modo y la señal de funcionamiento del evaporador está apagada, los valores de ENCENDIDO/APAGADO/DIFERENCIAL se sustituyen por los valores de ENCENDIDO/APAGADO/DIFERENCIAL de vaciado por bombeo. El valor del DIFERENCIAL de vaciado por bombeo se bloquea a cero. Los valores de ENCENDIDO/APAGADO de vaciado por bombeo deben ajustarse según la presión de diseño de los evaporadores.

NOTA: El interruptor de funcionamiento debe estar encendido para que la unidad funcione.

Modo de vaciado por bombeo	Señal de funcionamiento	Valor de encendido	Valor de apagado	Valor de diferencial
Activado	Encendido	Valor habitual	Valor habitual	Valor habitual
Activado	Apagado	Valor de ENCENDIDO de vaciado por bombeo	Valor de APAGADO de vaciado por bombeo	0
No activado	Encendido o apagado	Valor habitual	Valor habitual	Valor habitual

Ejemplo:

Valores normales para temp. de evaporador +23 °F	481 psi (33 bar)	447 psi (31 bar)	35 psi (2.4 bar)
Valores de vaciado por bombeo para 870 psi (60 bar) de presión de diseño del evaporador (EDP)	798 psi (55 bar)	653 psi (45 bar)	0 psi (0 bar) no modificable

Valores máximos recomendados de vaciado por bombeo

EDP - 72 psi (5 bar)	ENCENDIDO de vaciado por bombeo - 145 psi (10 bar)	no modificable
----------------------	--	----------------

Interruptor de seguridad de presión alta

El interruptor de presión alta detendrá el compresor en caso de sobrepresión y se restablecerá automáticamente para permitir que el compresor vuelva a arrancar cuando la presión haya caído por debajo del valor para reanudar el funcionamiento.

Parada

Cualquiera de las siguientes condiciones forzará al compresor a velocidad cero (0 rps).

- El interruptor de funcionamiento está apagado
- Se ha producido una condición anormal/error/alarma
- El OCU recibe la señal de solicitud de apagado
- Presión de succión por debajo del valor (APAGADO DIFERENCIAL)
- Presión de descarga ≥ 1639 psi
- Presión intermedia ≥ 1160 psi
- Presión del líquido ≥ 1146 psi

Válvula solenoide de equilibrado de presión (EV2)

Para un arranque más suave del compresor, la presión alta (HP), la presión intermedia (IP) y la presión baja (LP) están equilibradas. La EV2 está abierta cuando la unidad se enciende por primera vez y después de cada apagado de la unidad. Después del final del periodo de arranque, la válvula se cerrará cuando IP - LP \leq 36 psi o después de 3 minutos.

Sistema de aceite

Componentes

Separador, válvula solenoide y tubo capilar reductor de presión. El aceite se devuelve constantemente al compresor abriendo la válvula solenoide de aceite (EV1) mientras el compresor gira.

Modo de refuerzo de aceite

La velocidad del compresor se acelera una vez cada 2 horas para estimular el retorno de aceite. Durante este modo, la unidad sigue funcionando incluso cuando la señal de funcionamiento está apagada. Este modo se detiene cuando la presión baja alcanza el valor límite o se produce cualquier error, como la alerta de presión alta. Las alertas de recuperación automática no se registran ni se comunican durante este modo, mientras que las alertas de recuperación manual se registran y se comunican como siempre.

El rendimiento del retorno de aceite tiene una fuerte correlación con la velocidad del compresor, como se indica a continuación:

- Recuperación de aceite desde el lado del evaporador (relacionado principalmente con la velocidad del refrigerante)
- Retorno de aceite desde el separador de aceite que está regulado por el diferencial HP-IP (este modo eleva ambos simultáneamente)

Los valores de ENCENDIDO/APAGADO/DIFERENCIAL se cambian a los valores de la Tabla 1 durante [C] minutos cuando se cumple alguna de las siguientes condiciones:

- Condición de RPS bajas La velocidad del compresor no supera [A] x [RPS máx.] durante 2 horas
- Condición de ciclo corto El compresor se detiene más de [B] veces en 2 horas

Tabla 1: Valor de ENCENDIDO/APAGADO/DIFERENCIAL de refuerzo de aceite

Tabla 2: Parámetro de refuerzo de aceite (modificable)

Artículo	Temp. de referencia	psi	(MPa)	Elem	ento F	Predeterminado	Rango
Valor de ENC	CENDIDO	110	0.76	[A]	Porcentaje de la velocidad máx.	0.75	0.00-1.00
Valor de APA	(GADO	99	0.68	[B]	Recuento de paradas del comp.	10	0 - 30
Valor de DIF	ERENCIAL	15	0.1	[C]	Duración del refuerzo de aceite (minuto	os) 10	0 - 30

Enfriador de gas

Operación normal

La velocidad del ventilador del enfriador de gas se modula para mantener de 2 a 8 grados de diferencia entre la temperatura de salida del enfriador de gas y la temperatura ambiente.

Parada del compresor

Cuando el compresor esté parado y la presión alta suba ≥ 725 psi, el ventilador del enfriador de gas se encenderá.

Presión alta anormal

Si se produce un error o alarma de presión alta para detener el compresor, el ventilador del enfriador de gas se encenderá.

Temperatura del disipador de la placa del inversor

Si la temperatura del disipador de la placa del inversor sube por encima de 176 °F, la velocidad del ventilador del enfriador de gas aumenta hasta un máximo de 800 rpm. El control de la velocidad máxima se cancela cuando la temperatura del disipador térmico es inferior a 158 °F.

Válvula de expansión controlada eléctricamente (MOV)

Después de cada reinicio del microprocesador, todas las MOV pasarán de totalmente abiertas a totalmente cerradas antes de que comience el proceso de arranque del compresor. Cada 10 horas se repetirá el ciclo de todas las MOV.

- Válvula de reducción de presión (MOV5) Se modula para ajustar la presión alta en respuesta a los cambios de temperatura ambiente y temperatura de evaporación.
- Válvula de inyección de gas (MOV6) Se modula para ajustar la presión de salida del líquido de la unidad.
- Válvula de inyección de líquido (MOV7) Se modula para ajustar la temperatura de descarga.

Alarmas

Sensores de temperatura y presión anormales

Cuando se detectan condiciones anormales, el funcionamiento de la unidad (compresor, motor del ventilador, etc.) se detendrá y se mostrará un código de error. Si se borra el error, la unidad se reiniciará automáticamente al cabo de 1 minuto. Si se detecta la misma anomalía en el sensor 3 veces en 30 minutos, la unidad requerirá un reinicio manual.

	Panta	alla
Condición	Anormal (Recuperación automática)	Alarma (Recuperación manual)
anomalía del sensor de presión baja	E05	E05
anomalía del sensor de presión alta	E06	E06
anomalía del sensor de presión intermedia	E81	E81
anomalía del sensor de presión de salida de la unidad	E88	E88
anomalía del sensor de temperatura del gas de succión (entrada de refrigeración)	E07	E07
anomalía del sensor de temperatura ambiente	E23	E23
anomalía del sensor de temperatura de salida de la unidad	E57	E57
anomalía del sensor de temperatura de salida del enfriador de gas	E59	E59
anomalía del sensor de temperatura de salida dividida (enfriador intermedio)	E80	E80
anomalía del sensor de temperatura de descarga	E041	E041
anomalía del sensor de temperatura del disipador térmico	E221	E221

Lecturas de presión alta

Cuando se detectan condiciones anormales, el funcionamiento de la unidad (compresor, motor del ventilador, etc.) se detendrá y se mostrará un código de error. Si se borra el error, la unidad se reiniciará automáticamente al cabo de 5 minutos. Si se detecta la misma anomalía en el sensor 7 veces en 60 minutos, la unidad requerirá un reinicio manual.

	Pantalla		
Condición	Anormal (Recuperación automática)	Alarma (Recuperación manual)	
presión intermedia ≥ 1160 psi	E36	E46	
presión de salida de la unidad ≥ 1160 psi	E37	E47	
Presión alta ≥ 1639 psi	E311	E011	

Lecturas de temperatura alta

Cuando se detectan condiciones anormales, el funcionamiento de la unidad (compresor, motor del ventilador, etc.) se detendrá y se mostrará un código de error. Después de que se borre el error, la unidad se reiniciará automáticamente.

	Pantalla		
Condición	Anormal (Recuperación automática)	Alarma (Recuperación manual)	
temperatura del gas de descarga ≥ 244 °F (se restablece cuando la temperatura cae por debajo de 167 °F)	E101 / E10	E031 / E03	
temperatura del disipador térmico ≥ 212 °F (se restablece cuando la temperatura cae por debajo de 212 °F)	E201	E201	

Alarmas (continuación)

Comunicación externa

Si la comunicación desde el controlador externo se interrumpe durante 10 minutos o más, el funcionamiento de la unidad (compresor, motor del ventilador, etc.) se detendrá y aparecerá un código de error. Cuando se reciban los datos correctos desde el controlador externo, se borrará el error y la unidad se reiniciará automáticamente.

	Pantalla		
Condición	Anormal (Recuperación automática)	Alarma (Recuperación manual)	
anomalía en la comunicación del controlador maestro	E19	N/A	

Motor del ventilador

Cuando se detecten condiciones anormales, el funcionamiento de la unidad (compresor, motor del ventilador, etc.) se detendrá y se mostrará un código de error. Si se borra el error, la unidad se reiniciará automáticamente al cabo de 1 minuto. Si se detecta un error 3 veces en 60 minutos, se deberá reiniciar la unidad de forma manual.

	Pantalla		
Condición	Anormal	Alarma	
	(Recuperación automática)	(Recuperación manual)	
anomalía del motor del ventilador	E271	E281	

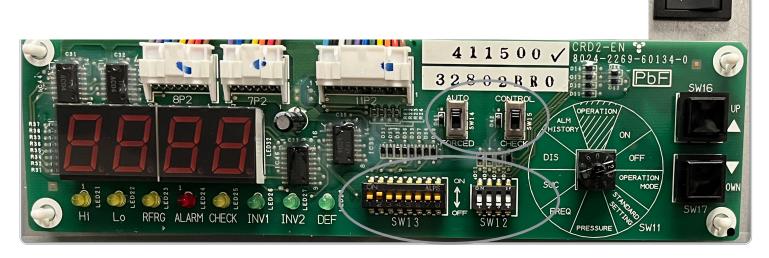
Inversor

Cuando se detecten condiciones anormales, el funcionamiento de la unidad (compresor, motor del ventilador, etc.) se detendrá y se mostrará un código de error. Después de 1 minuto, si se borra el error, la unidad se reiniciará automáticamente. Si se detecta un error 3 veces en 60 minutos, se deberá reiniciar la unidad de forma manual.

	Panta	alla
Condición	Anormal (Recuperación automática)	Alarma (Recuperación manual)
anomalía de comunicación del inversor	E181	E181
anomalía del inversor	E601	E701
cortocircuito del inversor	E611	E711
sobrecorriente del inversor	E621	E721
sobrecalentamiento del disipador térmico del inversor	E631	E731
sobrecarga del inversor	E641	E741
anomalía de voltaje del inversor	E651	E751
anomalía de desajuste del inversor	E661	E761
bajo voltaje del inversor	E671	E771
anomalía en el circuito de prevención de corriente de irrupción del inversor	E681	E781
anomalía de detección de voltaje de salida del inversor	E691	E791

<u>Misceláneo</u>

Cuando el sobrecalentamiento de la succión del compresor sea de 2 °F o menos durante 2 minutos, se mostrará el código de error E32. El código de error se borrará automáticamente cuando el compresor se detenga o el sobrecalentamiento aumente a 9 °F.


	Pantalla		
Condición	Anormal (Recuperación automática)	Alarma (Recuperación manual)	
alarma de retorno de refrigerante	E32	N/A	

AJUSTE E INDICACIÓN

Esta unidad de refrigeración está equipada con la función de ajuste de diversos modos de funcionamiento del compresor mediante el interruptor de la PCB CRD2-EN. El estado de funcionamiento del compresor puede controlarse en la pantalla. En particular, cuando ocurre alguna anomalía en la unidad de refrigeración, un LED de alarma (rojo) se enciende o parpadea, y la causa de la anomalía se muestra de forma digital con un código de error.

Interruptor e indicación

PCB CRD2-EN

Ajuste de los interruptores

(1) Interruptor AUTO/FORCED (Interruptor deslizante, SW14)

SW14	Función	Comentarios
AUTO FORCED	Automático	
	Forzado	Aún no utilizado

(2) Interruptor CONTROL/CHECK (Interruptor deslizante, SW15)

SW15		Función	Comentarios
	CONTROLADOR	Modo normal	
CONTROL VERIFICACIÓN	COMPRUEBE	Modo especial	Modo de evacuación (También se debe ajustar el interruptor DIP SW13)

(3) Interruptor DIP de 8 posiciones (SW13) Se pueden seleccionar las siguientes funciones. Cambie el ajuste según sea necesario. Cuando se envía de fábrica, el interruptor viene ajustado con el N.º 2: encendido, los demás (N.º 1, N.º 3 ~ N.º 8). Apagado.

SW13	N°	Funcionamiento cuando está encendido	Comentarios	
	IN-	esta encendido		
- D 0	1	Evacuación	N°. 3, 4, 5, 6, 7, 8: Apagado, SW15: COMPRUEBE	
2	2	Siempre o	encendido	
ω 📕	3			
4	4			
on T	5	Siempre	apagado	
S .				
7	6			
∞ ■	7	Modo alternativo 2	Nº.1, 3, 4, 5, 6, 8: Apagado	
	8	Modo alternativo 1	Nº.1, 3, 4, 5, 6, 7: Apagado	

(4) Interruptor DIP de 4 posiciones (SW12)

Se pueden seleccionar las siguientes funciones. Cambie el ajuste según sea necesario.

Cuando se envía de fábrica, el interruptor viene ajustado con el N.º 1, N.º 2, N.º 3, N.º 4: Apagado.

SW12	N°	Función	Comentarios
	1		
2	2	Velocidad de transmisión de Modbus	ENC.: 19200 bps Apagado: 9600 bps
ω 📕	3		
4	4		

AJUSTE DE LOS VALORES DE REFERENCIA DE LA PRESIÓN BAJA

- 1. Apague el interruptor de funcionamiento S1.
- 2. Asegúrese de que la alimentación está conectada.
- 3. Ajuste de la presión baja (valor de encendido, valor de apagado, valor del diferencial)

El ajuste predeterminado de la presión baja es el que se muestra en el elemento N.º 3 de la "Tabla de ajuste de la presión estándar" a continuación. Dado que el ajuste de presión baja objetivo puede cambiarse, utilice el siguiente procedimiento según sea necesario.

- Apague las posiciones N.º1 y N.º 3-N.º 8 del interruptor DIP de 8 posiciones (SW13), es decir, todas apagadas excepto la N.º 2.
- Ponga el interruptor giratorio (SW11) en "Standard Pressure Setting"" (Ajuste de presión estándar).
 La pantalla mostrará un único número.
- Presione el botón ▲ o ▼ para seleccionar el número deseado. En la tabla siguiente se muestra el valor de referencia para cada número.
- Ponga el interruptor giratorio (SW11) en [OPERATION] (FUNCIONAMIENTO)

N°	Uso	Temperatura de evaporación (°F)	Valor de encendido (psig)	Valor de apagado (psig)	Pres. baja Valor de diferencial (psig)	Valor de límite (psig)
1	Lácteos / deli	23	481.4	446.6	34.8	411.8
2	Frutas y verduras, etc.	19	432.1	414.7	34.8	379.9
3	Carne, pescados	10	377.0	359.6	34.8	324.8
4	Congelador, hielo	-31	197.2	179.8	17.4	162.4

Valor lím.: Cuando la presión baja sea inferior o igual a este valor límite, el compresor se detendrá. Valor lím. = Valor de apagado - Valor del diferencial

4. Confirmación y ajuste de la presión baja objetivo

Estos son los ajustes por defecto. Los ajustes se pueden personalizar.

- Encienda la posición N.º 8 del interruptor DIP de 8 posiciones (SW13).
- Apaque las posiciones N.º1 y N.º 3-N.º 7 del interruptor DIP de 8 posiciones (SW13).
- Ponga el interruptor giratorio (SW11) en [ON] (ENCENDIDO)
 Para cambiar el valor de encendido, presione el botón ▲ o ▼.
 El rango del "valor de encendido" es de 110 psig a 725 psig y debe ser superior al "valor de apagado" en 12 psig o más.
- Ponga el interruptor giratorio (SW11) en [OFF] (APAGADO).
 Para cambiar el valor de apagado, presione el botón ▲ o ▼.
 El rango del "valor de apagado" es de 99 psig a 714 psig y debe ser inferior al "valor de encendido" en 11 psig o más.
- Ponga el interruptor giratorio (SW11) en [OPERATION MODE] (MODO DE FUNCIONAMIENTO).
 Para cambiar el valor del diferencial, presione el botón ▲ o ▼.
 El rango del "valor diferencial" es de 12 psig a 267 psig, y el "valor límite" debe ser de 84 psig o más.
- Ponga el interruptor giratorio (SW11) en [OPERATION] (FUNCIONAMIENTO).
 A continuación, el valor de encendido y el valor de apagado se almacenan en la memoria.

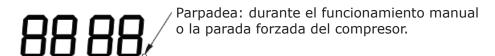
INDICACIÓN

1. LED individual de la PCB CRD2-EN

Nombre	Color	Condición cuando el LED se enciende
Hi	Amarillo	La presión baja es igual al "valor de encendido" de control o superior.
Lo	Amarillo	La presión baja es igual al "valor de apagado" de control o inferior.
Alarma	Rojo	Se enciende/parpadea en caso de anomalía o cuando se genera una condición de alarma. Para más detalles, consulte la "Descripción de la alarma de anomalía" en "Acerca de las alarmas".
Verifique	Amarillo	ENC.: En el modo de verificación de la placa de circuitos impresos, o en el modo de evacuación Parpadea: El interruptor deslizante SW 15 ("CONTROL/CHECK") está en "CHECK" (VERIFICACIÓN).
INV1	Verde	Se ilumina durante el funcionamiento del compresor.
INV2	Verde	No corresponde
DEF.	Verde	Parpadea: En el modo de vacío, válvula de expansión electrónica en control manual

- 2. Pantalla Cuando el interruptor giratorio (SW11) está en [OPERATION] (FUNCIONAMIENTO), la pantalla indica del "a." al "d." a continuación:
 - a. Funcionamiento normal

Durante el funcionamiento normal, la pantalla alterna entre presión baja (psig) » presión alta (psig) » presión de salida de la unidad (psig). Indica "LP" cuando la presión baja es inferior a 0.00. A efectos de identificación, se añade "HP" al final de la presión alta, y "OP" al final de la presión de salida de la unidad.


b. Cuando se genera una condición de alarma.

La pantalla alterna entre Presión baja (psig) » Presión alta (psig) » Presión de salida de la unidad (psig) » Contenido de error.

c. Método para fijar la indicación de la presión baja

Al presionar el botón ∇ durante el funcionamiento normal se fija la visualización de la presión baja por 10 minutos. Presionar el botón ∇ de nuevo cancela la visualización fija. Sin embargo, cuando se genera una alarma, la indicación de presión baja no se puede fijar.

d. El punto en el dígito de menor valor de la pantalla digital (abajo a la derecha)

AJUSTE DE LA LISTA DE VISUALIZACIÓN

Pantalla digital y lista de funcionamiento

	DIPSW			Posición del			_														
Modo	13-8	13-7	13-5	interruptor giratorio (Perilla)	Visualización/configuración		Comentarios														
				OPERACIÓN	Se muestra la presión baja y la presión alta de forma alternada.	Presión baja Lo.0.00 a 9.98 (MPa) Presión alta Lo-H 0.00 H a *** H (MPa)	Al presionar ▲: Se cancela el parpadeo del LED rojo Mientras se presiona ▼: temperatura de evaporación Al presionar ▼ y soltar: presión baja (Solo cuando no se indica ningún error)														
				ENC.	"Valor de encendido"	0,76 a 5.00 (MPa)	El ajuste no se puede modificar.														
				Apagado	"Valor de apagado"	0.68 a 4.92 (MPa)	Al presionar ▲: "Valor lím." Al presionar ▼: "Valor del diferencial"														
				OPERATION MODE	Modo de funcionamiento	Visualización de [FrE]	El ajuste no se puede modificar.														
ndar				STANDARD SETTING	Selección de la presión estándar	Visualización de [F]	Al presionar ▲ : Sube el valor ajustado Al presionar ▼: Baja el valor ajustado														
Modo estándar	Apagado	Apagado	Apagado	PRESIÓN	Presión alta/intermedia/de salida de la unidad/baja	Presión alta: *** H (MPa) Presión intermedia: *** c (MPa) Presión de salida de la unidad: *** o (MPa) Presión baja: *** (MPa)	Al presionar ▲: cambio de los datos visualizados Al presionar ▼: cambio de los datos visualizados														
				FRECUENCIA	Velocidad de rotación del compresor	**.**(s1)	[Ex] En el caso de 10 (s1) \rightarrow xx.0 En el caso de menos de 10 (s1) \rightarrow x,00														
				SUCCIÓN	Temperatura del gas de succión	****(°C)	Al presionar ▲: Velocidad de calentamiento de succión (K) Al presionar ▼: Temperatura de salida de la unidad (°C)														
				DESCARGA	Temperatura del gas de descarga	****(°C)															
				ALM HISTORY	Visualización del código de error del historial de alarmas	E*** (Código de error) Últimos 50 elementos (los datos más antiguos se borran)	Al presionar ▲: Datos más antiguos Al presionar ▼: Datos más nuevos														
	ENC.			ENC.	Ajuste del "valor de encendido"	0,76 a 5.00 (MPa)															
					Apagado	Ajuste del "valor de apagado"	0.68 a 4.92 (MPa)														
											OPERATION MODE	Ajuste del "valor diferencial"	0.08 a 1.84 (MPa)	Al presionar ▲: Sube el valor ajustado Al presionar ▼: Baja el valor ajustado							
						STANDARD SETTING	Ajuste del tiempo de parada forzada	30 s a 180 s (incremento de 1 s)													
Vo 1		Apagado	Apagado				•	PRESIÓN	Selección del tipo de protocolo	1,PAn 2,oth 3,Mod	1										
Modo alternativo 1				o Apagado	Apagado	FRECUENCIA	Ajuste de la dirección	0 Sin comunicación (Ajuste en el envío) 1 a 49 Pan/oth 1 a 50: Mod	Al presionar ▲: Sube el valor ajustado Al presionar ▼: Baja el valor ajustado												
Ĭ				SUCCIÓN	Modo de funcionamiento	Fijado en "Modo de alta resolución (FrE)"	El ajuste no se puede modificar.														
				DESCARGA	Modo de funcionamiento del ventilador	_	_														
																		ALM HISTORY	Cambie el terminal de la señal de la válvula electromagnética del tubo de líquido a la función que emite voltaje según la temperatura del aire exterior	Encendido: Funcionamiento del terminal de la señal de la válvula electromagnética del tubo de líquido Apagado: Emite voltaje en función de la temperatura del aire exterior	Al presionar ▲: Encendido Al presionar ▼: Apagado
			Apagado	ENC.	Indicación de la presión alta/presión intermedia/presión de salida de la unidad/presión baja	Presión alta *** H (MPa) Presión intermedia *** c (MPa) Presión de salida de la unidad: ***o (MPa) Presión baja *** (MPa)	Al presionar ▲: Aumenta el valor mostrado Al presionar ▼: Reduce el valor mostrado														
0.2				Apagado	Apagado	Apagado	Indicación de otras temperaturas (Salida de la unidad de succión, enfriador de gas)	****(°C)													
Modo alternativo	Apagado	ENC.				Apagado	Apagado	Apagado	Apagado	Apagado	Apagado	Apagado	Apagado	Apagado	Apagado	Apagado	PRESIÓN	Visualización de la apertura de la válvula de expansión electrónica (Reducción de presión. Retorno de gas. Inyección de líquido)	MOV5 5. *** (paso) MOV6 6. *** (paso) MOV7 7 *** (paso)	-	
Mod				FRECUENCIA	Corriente del compresor	****(a)	_														
				SUCCIÓN	Velocidad del ventilador del codificador de gas	**** (rpm)	_														
				DESCARGA	_	_	Al presionar ▲: Versión del software Al presionar ▼: Borrar historial de alarmas														
				ALM HISTORY	Temperatura ambiente	****(°C)	_														
4				OPERATION MODE	Retraso en el arranque del compresor	0 s a 30 s (incrementos de 1 s)	Al presionar ▲: Sube el valor ajustado Al presionar ▼: Baja el valor ajustado														
rnativo	Apagado	Anagada	ENIC	ENC.	Ajuste de encendido-apagado de la salida de voltaje cuando	Ajuste de "temperatura de encendido" Rango ajustable de 20 a 40 (°C)	Al presionar ▲: Sube el valor ajustado Al presionar ▼: Baja el valor ajustado														
Modo alternativo 4		Apagado	Apagado	Apagado	ENC.	Apagado	Cambie el terminal de la señal de la válvula electromagnética del tubo de líquido a la función que emite voltaje según la temperatura del aire exterior	Ajuste del "diferencial" Rango ajustable de 1 a 20 (°C) La "temperatura de apagado" está dada por el "diferencial" respecto al valor de "temperatura de encendido"	Al presionar ▲: Sube el valor ajustado Al presionar ▼: Baja el valor ajustado												

FUNCIONES DE CONTROL Y SISTEMA

Método de control de la presión baja

La capacidad del compresor se controla cambiando la frecuencia del inversor en función de la diferencia entre la presión baja y el valor de referencia, ajustando la presión baja al valor de referencia (valor de encendido a valor de apagado). Sin embargo, el funcionamiento del compresor continúa aunque la presión baja quede por debajo del "valor de apagado" y finalmente se detiene cuando la presión baja llega a un valor inferior al "valor límite".

* Valor límite = Valor de apagado - Valor del diferencial

Para el ajuste del valor del diferencial, consulte "Ajuste de la presión baja" en "Ajuste e indicación".

Control de prevención de ciclos cortos

Cuando el compresor se ha detenido, permanece apagado durante un mínimo de 30 segundos. Este parámetro es el "tiempo de parada forzada" y es ajustable (de 30 a 180 segundos).

Funciones de protección

- 1. Inversión de alimentación/fase faltante, anomalía de la presión alta, anomalía de la presión intermedia, anomalía de la presión de salida de la unidad Detiene el compresor.
- 2. Anomalía de la temperatura del gas de descarga
 - a. Operación normal

El funcionamiento del compresor se detiene cuando la temperatura del gas de descarga supera los 244 °F (118 °C) y se reanuda cuando la temperatura del gas de descarga llega a 167 °F (75 °C).

Cuando se produce una temperatura anormal del gas de descarga 3 veces en 2 horas, el compresor dejará de funcionar aunque la temperatura del gas de descarga llegue a 167 °F (75 °C). Para el método de reanudación (reinicio) del funcionamiento del compresor, consulte "Descripción de la alarma de anomalía" en "Acerca de las alarmas".

3. Anomalía de retorno de refrigerante

Cuando el sobrecalentamiento de la succión del compresor sea de 2 °F o menos durante 2 minutos seguidos, se genera una señal de error. La señal de error se cancela cuando el sobrecalentamiento supera los 9 °F.

- 4. Anomalía del sensor
 - a. Condición abierta del sensor de presión baja y presión intermedia, el sensor de presión de salida de la unidad, el sensor de presión alta El compresor se detiene y se indica un error. Para el método de reanudación (reinicio) del funcionamiento del compresor, consulte "Descripción de la alarma de anomalía" en "Acerca de las alarmas".
 - b. Condición abierta del sensor de temperatura del gas de descarga, sensor de temperatura de la salida del enfriador de gas, sensor de temperatura de la salida de la unidad y sensor de temperatura ambiente - El compresor se detiene y se indica un error. Para el método de reanudación (reinicio) del funcionamiento del compresor, consulte "Descripción de la alarma de anomalía" en "Acerca de las alarmas".
 - c. Condición abierta del sensor de temperatura del gas de succión. El compresor se detiene y se indica un error. Para el método de reanudación (reinicio) del funcionamiento del compresor, consulte "Descripción de la alarma de anomalía" en "Acerca de las alarmas".
- 5. Anomalía en la comunicación (Modbus RS-485)

Mientras continúa la comunicación con el controlador (el N.º de refrigerador para la comunicación externa es distinto de 0), si los datos del controlador no se reciben durante 10 minutos, se indica un error. Durante dichas condiciones, el funcionamiento del compresor continúa. El error se cancela cuando se reanuda la recepción de datos del controlador.

APRECAUCIÓN

» Cuando el N.º de refrigerador para la comunicación externa se ajusta a un valor distinto de 0 sin conectar el controlador, se muestra un error (E19).

6. Anomalía del inversor

El compresor se detiene cuando se produce alguna de las anomalías indicadas en la sección "Acerca de las alarmas". Consulte la anomalía del inversor de la sección "Acerca de las alarmas" para conocer más detalles.

7. Anomalía en la comunicación del inversor

Cuando la PCB INV4-MF-EN no puede recibir datos de la PCB CR2-EN, el funcionamiento del compresor se detiene y se indica un error.

Para el método de reanudación (reinicio) del funcionamiento del compresor, consulte "Descripción de la alarma de anomalía" en "Acerca de las alarmas".

AJUSTE DURANTE EL FUNCIONAMIENTO

Cómo evitar el funcionamiento en ciclos cortos

El funcionamiento en ciclos cortos (funcionamiento con arranques/paradas frecuentes) provoca un arrastre excesivo de aceite durante el arranque y causa una lubricación insuficiente.

Ajuste el ciclo de funcionamiento para evitar el funcionamiento en ciclos cortos. (Ajuste el ciclo de encendido-apagado para que sea de 10 minutos o más).

La causa principal del funcionamiento en ciclos cortos es un ajuste inadecuado de la presión en la PCB CRD2-EN, la obstrucción del filtro de succión y el desequilibrio entre la capacidad de enfriamiento y la carga.

Cuando se utiliza un serpentín de enfriamiento, la colocación del sensor de temperatura del compartimento en una posición incorrecta (el flujo de aire frío incide directamente en el sensor) se convertiría en un problema adicional a los anteriores. Revise la posición del sensor.

Verificación del estado de funcionamiento de la unidad de refrigeración

- 1. Inspeccione la unidad de refrigeración y las tuberías para detectar vibraciones anormales.
- 2. Revise si la carga de refrigerante es insuficiente o excesiva (controle la temperatura de salida del enfriador de gas y la presión alta).
- 3. Verifique que el valor de referencia de la válvula de expansión (válvula de expansión electrónica) y del termostato sea el adecuado.
- 4. Verifique si se permite o no el funcionamiento con retorno de líquido (controle el sobrecalentamiento de la temperatura del gas de succión).

Ajuste de la cantidad de refrigerante de la unidad de refrigeración

Al determinar la cantidad de refrigerante, la temperatura de todos los enfriadores unitarios/exhibidores debe ajustarse a la temperatura más baja sin activación del termostato para permitir el funcionamiento continuo de la unidad de refrigeración.

1. Método para determinar la cantidad de refrigerante

Controle el estado de funcionamiento de la unidad de refrigeración mediante el siguiente método, y ajuste la cantidad de refrigerante al valor adecuado según la Tabla 3 (Criterios para determinar la cantidad de refrigerante).

- a. Verifique que la temperatura del gas de succión sea de 64.4 °F o inferior.
- b. Verifique que el sobrecalentamiento de la temperatura del gas de succión sea de 18 °F o superior.
- c. Verifique que la presión alta se haya ajustado a la presión alta estándar (Tabla 2).
- d. Verifique que la temperatura de salida del enfriador de gas sea de +3.6 °F a +9 °F con respecto a la temperatura ambiente.

El método de verificación de cada temperatura y presión debe atenerse a la Tabla 1 y el valor debe confirmarse con la pantalla digital.

Tabla 1 Método de verificación de cada temperatura y presión

Artículo	Ajustes del interruptor DIP SW13	Posición del interruptor giratorio SW11
Temperatura del gas de succión	SW13-2 ON (todos los demás apagados)	Succión
Presión alta	SW13-2 ON (todos los demás apagados)	Presión
Temperatura de salida del enfriador de gas	SW13-2 y 7 encendidos (los demás apagados)	Apagado (Presione ▲ 3 veces)
Temperatura ambiente	SW13-2 y 7 encendidos (los demás apagados)	ALM history (Historial de alarmas)

Tabla 2 Presión alta estándar

Temperatura ambiente	Temperatura de evaporación ≤ -4 °F (-20 °C) Presión alta	Temperatura de evaporación ≤ -4°F (-20°C) Presión alta
32 °F o inferior (0 °C o inferior)	493 psig (3.4 MPa)	493 psig (3.4 MPa)
41 °F (5 °C)	566 psig (3.9 MPa)	566 psig (3.9 MPa)
50 °F (10 °C)	638 psig (4.4 MPa)	638 psig (4.4 MPa)
59 °F (15 °C)	725 psig (5.0 MPa)	725 psig (5.0 MPa)
68 °F (20 °C)	812 psig (5.6 MPa)	841 psig (5.8 MPa)
77 °F (25 °C)	1044 psig (7.2 MPa)	1160 psig (8.0 MPa)
86 °F (30 °C)	1146 psig (7.9 MPa)	1276 psig (8.8 MPa)
95 °F (35 °C)	1233 psig (8.5 MPa)	1363 psig (9.4 MPa)

Tabla 3 Criterios para determinar la cantidad de refrigerante

Tabla 5 Criterios para acterminar la	santiada de reinigerante		
Temp. de salida de enfriador de gas	Menor que "Temp. ambiente + 3.6 F (2 K)"	"Temp. ambiente + 3.6 F (2 K)" a "Temp. ambiente + 9 F (5 K)"	Mayor que "Temp. ambiente + 9 F (5 K)"
Alta	A	A	0
Estándar	0	O	∇
Ваја	▽	▽	▽

 \blacktriangle : Sobrecarga de refrigerante, \odot : Adecuada, ∇ : Refrigerante insuficiente

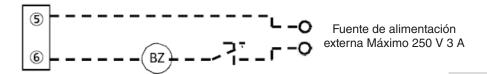
O: Mantenga un funcionamiento continuo y controle el estado

- 2. Ajuste de la cantidad de refrigerante
 - a. Refrigerante insuficiente (al cargar refrigerante adicional)
 - Realice la operación de enfriamiento y cargue refrigerante adicional a través del puerto de acceso de la válvula de servicio de presión baja.
 - Ajuste la apertura de la válvula durante la operación de carga lenta para evitar la formación de escarcha más allá de la válvula de servicio de refrigerante.
 - La pauta de velocidad de carga de refrigerante es de 0.71 oz. (20 g) cada 5 segundos.

Nota: Una carga rápida de refrigerante puede provocar una falla del compresor.

- b. Sobrecarga de refrigerante (al liberar el refrigerante)
 - Libere el refrigerante a través del puerto de acceso de la válvula de servicio de presión baja.
 - Abra la válvula muy lentamente. Tenga cuidado, puede salir aceite.
 - Como el refrigerante CO₂ es más pesado que el aire, tenga cuidado con el estancamiento del gas.
- c. Después de finalizar el ajuste de refrigerante, cierre el puerto de acceso de la válvula de servicio de presión baja.

APRECAUCIÓN


» La falta de refrigerante tiende a causar un nivel más bajo de la presión alta y un nivel más alto de la presión intermedia.

INFORMACIÓN ADICIONAL SOBRE LAS ALARMAS

Alarmas externas

Esta unidad de refrigeración puede emitir una salida de alarma durante la anomalía (contacto sin voltaje: capacidad de contacto máximo 250 V 3 A).

Durante la anomalía de la unidad, se activa la salida de alarma entre la base 5 y la base 6 de terminales de alarma externa (continuidad entre los contactos). Se recomienda la conexión de un circuito de alarma externo (cableado local). La alimentación de la alarma externa debe suministrarse por separado de la alimentación de la unidad de refrigeración. El detalle del contenido de la alarma de anomalía se muestra en la siguiente tabla.

Interruptor de apagado del zumbador

APRECAUCIÓN

» Utilice un cable blindado adecuado para el voltaje de la fuente de alimentación externa utilizada.

DESCRIPCIÓN DE LA ALARMA DE ANOMALÍA

Cuando se active el GFI, revise el aislamiento del equipo y del circuito, elimine la causa y vuelva a suministrar corriente.

					Anon	nalía				
			Al reir	niciar			Cuando se	detiene		Nota
		Indicación d	le alarma	Señal de alarma	Señal de comunicación	Indicaci	ón de alarma	Señal de alarma	Señal de comunicación	
	Número de veces para reiniciar automáticamente	LED de ALARMA (Rojo)	Código de error			LED de ALARMA (Rojo)	Código de error			
Fase inversa, Pérdida de fase	Ninguna					lámparas	E00	Salida	Salida	
Anomalía de la presión alta	6	Parpadeando	E311	Ninguna	Ninguna	lámparas	E011	Salida	Salida	1)
Anomalía de la temperatura del gas de descarga	2	Parpadeando	E101	Ninguna	Ninguna	lámparas	E031	Salida	Salida	2)
Anomalía del sensor de temperatura del gas de descarga	Ninguna					lámparas	E041	Salida	Salida	
Anomalía del sensor de presión baja	Ninguna					lámparas	E05	Salida	Salida	
Anomalía del sensor de presión alta	Ninguna					lámparas	E06	Salida	Salida	
Anomalía del sensor de temperatura del gas de succión	Ninguna					Apagado	E07	Ninguna	Ninguna	
Anomalía de la comunicación del inversor	Ninguna					lámparas	E181	Salida	Salida	
Anomalía de la comunicación del controlador	Ninguna					Apagado	E19	Ninguna	Ninguna	
Anomalía de la temperatura del disipador de calor	Ninguna					lámparas	E201	Salida	Salida	
Anomalía de la temperatura del disipador de calor	Ninguna					lámparas	E221	Salida	Salida	
Anomalía del sensor de temperatura ambiente	Ninguna					lámparas	E23	Salida	Salida	
Anomalía del motor del ventilador del enfriador de gas	Ninguna	Parpadeando	E271	Ninguna	Ninguna	Apagado	E281	Salida	Salida	
Alarma de retorno de refrigerante	Ninguna					Apagado	E32	Ninguna	Ninguna	3)
Anomalía de la presión intermedia	6	Parpadeando	E36	Ninguna	Ninguna	lámparas	E46	Salida	Salida	
Anomalía de la presión de salida de la unidad	6	Parpadeando	E37	Ninguna	Ninguna	lámparas	E47	Salida	Salida	
Anomalía del sensor de presión intermedia	Ninguna					lámparas	E81	Salida	Salida	
Anomalía del sensor de temperatura de salida de la unidad	Ninguna					lámparas	E57	Salida	Salida	
Anomalía del sensor de temperatura de salida del enfriador de gas	Ninguna					lámparas	E59	Salida	Salida	
Anomalía del sensor de presión de salida de la unidad	Ninguna					lámparas	E88	Salida	Salida	
Sobrecarga de refrigerante		Parpadeando	E84	Ninguna	Ninguna					

Método de reinicio cuando la unidad se detiene

- ** Accione el GFI, el interruptor de funcionamiento o el controlador..
- 1. Después de estar detenida durante 5 min, se inicia la "recuperación automática".
- 2. Reinicie cuando la temperatura del gas de descarga sea de (167 °F) 75 °C o inferior.
- 3. La recuperación automática se produce cuando la diferencia entre la temperatura de evaporación y la temperatura del gas de succión es de 9 °F (5 °C) o superior.

				Elemento de ano	malía del inv	ersor		
	Co	n el 1. ^{er} y 2.º inc automát	idente se re icamente	establece	Con el 3.er incidente se detiene			
	Código de error LED de ALARMA (Rojo) Señal de alarma externa Señal de comunicación				Código de error	LED de ALARMA (Rojo)	Señal de alarma externa	Señal de comunicación
Anomalía del inversor	E601	Parpadeando	Ninguna	Ninguna	E701	lámparas	Salida	Salida
Anomalía de corriente del inversor	E621	Parpadeando	Ninguna	Ninguna	E721	lámparas	Salida	Salida
Anomalía de voltaje del inversor	E651	Parpadeando	Ninguna	Ninguna	E751	lámparas	Salida	Salida
Anomalía de desajuste del inversor	E661	Parpadeando	Ninguna	Ninguna	E761	lámparas	Salida	Salida
Anomalía del circuito de prevención de corriente de irrupción del inversor	E681	Parpadeando	Ninguna	Ninguna	E781	lámparas	Salida	Salida

MANTENIMIENTO E INSPECCIÓN

Los trabajos de mantenimiento e inspección son responsabilidad del contratista de la instalación. Todos los trabajos deben ser realizados por técnicos autorizados y con licencia.

Solicitud de mantenimiento e inspección:

La empresa instaladora debe acordar con el usuario del equipo la realización de inspecciones programadas del equipo.

Piezas de repuesto y pautas para la sustitución

A continuación, se muestran los principales componentes que requieren inspección y sustitución en una unidad de refrigeración, junto con su frecuencia de inspección y sustitución. Cuando se detecte alguna anomalía mediante la inspección, sustituya la pieza cuanto antes. Consulte Accesorios opcionales y Piezas de repuesto en las páginas 64-65.

Los plazos de inspección y sustitución varían según la frecuencia y las condiciones de funcionamiento, las condiciones ambientales del entorno y el estado de cada componente y no pueden determinarse de manera uniforme. Solicitamos una inspección completa, en particular en (1) la puesta en marcha, (2) la inspección programada, (3) el mantenimiento del sistema, etc.

Elementos de inspección/F	Piezas de repuesto	Contenido de la inspección/Guía de sustitución				
Sistema global (temperatu	ra de cada pieza)	 (1) La condición de presión debe coincidir con la temperatura de enfriamiento (2) La temperatura de cada pieza debe ser normal (3) No debe haber ninguna anomalía en las condiciones de instalación. 				
Compresor	Sonido anormal, vibración anormal	No debe generarse ningún sonido ni vibración anormales.				
Enfrieder de gee	Obstrucción de la aleta	¿La aleta está obstruida con polvo? Limpieza programada				
Enfriador de gas	Rotación del ventilador	¿Hay alguna anomalía en la rotación del ventilador?				
	Secador del filtro	Sustituya el filtro secador por obstrucción, deformación o diferencias grandes de temperatura y/o presión entre la entrada y la salida del secador.				
Componente de las tuberías	Filtro de succión	Sustituya el filtro de succión por obstrucción, deformación o diferencias grandes de temperatura y/o presión (presión anormalmente baja) entre la entrada y la salida del filtro.				
	Otras partes de las tuberías	Fuga de refrigerante, fuga de aceite, deformación, vibración anormal, deterioro del material de aislamiento térmico				
	Motor del ventilador	Sustitúyalo cuando produzca un sonido anormal, se vuelva pesado al girar, se observen manchas de aceite, etc.				
Componentes eléctricos	Activación del dispositivo de protección y componente de control	Sustitúyalos cuando el control falle por movimiento defectuoso, chirrido, etc.				
	Terminales, cables, etc.	Cualquier cambio de color, deterioro del aislamiento				
	Filtro de aire de la caja de conexiones eléctricas	Limpie el filtro periódicamente (cada 3 a 6 meses) según la contaminación.				

DIAGNÓSTICO DE SERVICIO

MEDIDAS EN EL MOMENTO DE LA FALLA

Cuando la unidad de refrigeración o cualquier componente del circuito de refrigerante deje de funcionar, desconecte la alimentación antes de realizar un diagnóstico del sistema o cualquier reparación. Si tiene alguna pregunta sobre su equipo, póngase en contacto con nuestro Equipo de asistencia técnica al 866-785-8499 Para obtener asistencia general o llamadas de servicio, póngase en contacto con nuestro Centro de atención al cliente al 800-922-1919

Para evitar que se repita la falla, tenga las siguientes precauciones:

- 1. Para evitar que se repita la misma falla, realice un diagnóstico fiable de la falla e identifique la causa real antes de iniciar una reparación.
 - Cuando se active el protector de falla a tierra, revise el aislamiento del equipo y del circuito, elimine la causa y, a continuación, vuelva a suministrar energía.
- 2. Cuando sea necesario reparar una tubería, asegúrese de liberar el refrigerante del lugar a soldar y haga pasar gas nitrógeno mientras realiza la soldadura.
- 3. Cambie siempre el filtro secador cuando sustituya un componente importante como un compresor, un enfriador de gas, refrigerante o aceite.
 - Cuando el circuito de refrigerante esté contaminado debido a un motor de compresor quemado, etc., aplique un golpe de nitrógeno para eliminar el aceite refrigerante que quede en el circuito de refrigerante. (En ese momento, desmonte también la válvula de expansión (válvula de expansión electrónica)).
- 4. Cuando sustituya el compresor, no aplique corriente al calentador del cárter al desmontar el compresor. Asegúrese de desconectar la alimentación (puede provocar un incendio).
- 5. Vuelva a colocar todos los componentes retirados antes de volver a poner en marcha la unidad.
- 6. Sustituya la placa de circuitos del filtro (PCB INV4-MF-EN) entera cuando se rompa el fusible.

AADVERTENCIA

— BLOQUEO Y ETIQUETADO —

» Para evitar lesiones graves o la muerte por descarga eléctrica, siempre desconecte la energía eléctrica desde el interruptor principal cuando haga mantenimiento o reemplace algún componente eléctrico. Esto incluye, entre otras cosas, elementos como los controladores, los componentes eléctricos, los condensadores, las lámparas, los ventiladores y los calentadores.

BORRADO DEL HISTORIAL DE ALARMAS

Accione el interruptor giratorio (perilla) y el interruptor DIP.

- 1. Alinee el interruptor giratorio (perilla) con la posición [DIS]. (Se muestra la temperatura del gas de descarga)
- 2. Encienda el interruptor DIP SW13-7.
- 3. Presione el botón ▼. (Se borra todo el contenido del [Historial de alarmas]).
- 4. Apague el interruptor DIP SW13-7.
- 5. Alinee el interruptor giratorio (perilla) con [Alarm History] (Historial de alarmas) y confirme que se visualice (E***), lo que indica que se ha borrado el contenido.
- 6. Vuelva a colocar el interruptor giratorio (perilla) en la posición [OPERATION] (FUNCIONAMIENTO).

DIAGNÓSTICO DE FALLAS

Códigos de error

1. Cuando el interruptor giratorio (perilla) está en la posición [OPERATION] (FUNCIONAMIENTO), la pantalla digital de la PCB CRD2-EN muestra de forma alternada la presión baja, la presión alta y el código de error (E ***).

Código de error	Significado	Causa	Método de corrección
E00	Fase inversa, Pérdida de fase	Fase inversa o pérdida de fase detectada.	(1) Verifique que el suministro eléctrico sea normal (2) Revise la conexión de "L1. L2, L3, N" de la base de terminales de la fuente de alimentación y la conexión "L1, L2, L3, N" de la PCB INV4-MF-EN.
E011	Anomalía de la presión alta (7.º incidente)	El aumento de la presión alta provocó una anomalía de la presión alta.	 (1) Investigue la causa de la anomalía de la presión alta. (2) Revise el sensor de presión alta en busca de anomalías.
E031	Anomalía de la temperatura del gas de descarga (3.er incidente)	Se produjo una parada anormal causada por el aumento de la temperatura de descarga a 118 °C tres veces en dos horas.	Siga el procedimiento indicado en "Diagnóstico de fallas en caso de temperatura anormal del gas de descarga" (1) Busque la causa del aumento de la temperatura del gas de descarga. (2) Revise la conexión del "conector 1 de descarga 2P4" de la PCB CR2-EN. (3) Controle el valor de la resistencia del sensor de temperatura de gas de descarga (Consulte "Método de verificación de las características del sensor").
E041	Anomalía del sensor de temperatura del gas de descarga	El sensor de temperatura de gas de descarga presenta una anomalía (condición de circuito abierto).	Revise la conexión del "conector 1 de descarga 2P4" de la PCB CR2-EN. Controle el valor de la resistencia del sensor de temperatura de gas de descarga (Consulte "Método de verificación de las características del sensor").
E05	Anomalía del sensor de presión baja	El sensor de presión baja presenta una anomalía (condición de circuito abierto).	 (1) Revise la conexión del "conector de presión baja 3P1" de la PCB CR2-EN. (2) Controle el valor de la resistencia del sensor de presión baja (Consulte "Método de verificación de las características del sensor").
E06	Anomalía del sensor de presión alta	El sensor de presión alta presenta una anomalía (condición de circuito abierto).	 (1) Revise la conexión del "conector de presión alta 3P3" de la PCB CR2-EN. (2) Controle el valor de la resistencia del sensor de presión alta (Consulte "Método de verificación de las características del sensor").
E07	Anomalía del sensor de temperatura del gas de succión	El sensor de temperatura del gas de succión presenta una anomalía (condición de circuito abierto).	 (1) Revise la conexión del "conector de entrada 2P9 U" de la PCB CR2-EN. (2) Controle el valor de la resistencia del sensor de temperatura del gas de succión (Consulte "Método de verificación de las características del sensor").
E101	Anomalía de la temperatura del gas de descarga (1.er a 2.º incidente)	La temperatura del gas de descarga aumentó a 118 °C o más y generó una parada anormal. O el sensor de temperatura del gas de descarga entró en cortocircuito.	Cumpla con el "Diagnóstico de fallas en el momento de la anomalía de la temperatura del gas de descarga". (1) Busque la causa del aumento de la temperatura del gas de descarga. (2) Revise la conexión del "conector 1 de descarga 2P4" de la PCB CR2-EN. (3) Controle el valor de la resistencia del sensor de temperatura de gas de descarga (Consulte "Método de verificación de las características del sensor").
E181	Anomalía de la comunicación del inversor	No hay señal de comunicación en serie entre la "PCB CR2-EN" y la "PCB INV4-MF-EN"	Compruebe la línea de comunicación entre el "conector 5P1, 5P2" de la PCB CR2-EN y el "conector CN14, CN15" de la PCB INV4-MF-EN.
E19	Anomalía de la comunicación del controlador	No existe señal del controlador en la comunicación.	 (1) Revise la línea de comunicación ("conector 5P4, 5P5" de la PCB CR2-EN). (2) Ajuste el n.º de unidad de refrigeración para la comunicación a un valor distinto de "0".
E201	Anomalía de la temperatura del disipador de calor	La temperatura del disipador de calor del inversor aumentó a 100°C o más y se detuvo de forma anormal.	 Investigue la causa del aumento de la temperatura del disipador de calor. Revise la conexión del "conector 1 del enfriador 2P31" de la PCB CR2-EN. Controle el valor de la resistencia del sensor de temperatura del disipador de calor (Consulte "Método de verificación de las características del sensor").
E221	Anomalía del sensor de temperatura del disipador de calor	El sensor de temperatura del disipador de calor presenta una anomalía (condición de circuito abierto).	 (1) Revise la conexión del "conector 1 del enfriador 2P31" de la PCB CR2-EN. (2) Controle el valor de la resistencia del sensor de temperatura del disipador de calor (Consulte "Método de verificación de las características del sensor").
E23	Anomalía del sensor de temperatura ambiente	El sensor de temperatura ambiente presenta una anomalía (condición de circuito abierto).	 (1) Revise la conexión del "conector de aire ambiente 2P8" de la PCB CR2-EN. (2) Controle el valor de la resistencia del sensor de temperatura ambiente (Consulte "Método de verificación de las características del sensor").
E271	Anomalía del motor del ventilador del enfriador de gas (1. ^{er} a 2.º incidente)	El motor del ventilador del enfriador de gas presenta una anomalía. (La velocidad de rotación del ventilador se desvió	 (1) Revise si el ventilador está bloqueado, desencajado, etc. (2) Revise la conexión de los "conectores CN6, CN9 o C30" de la PCB INV4-MF-EN.
E281	Anomalía del motor del ventilador del enfriador de gas (3.er incidente)	significativamente de la velocidad de rotación de referencia).	(3) Revise la conexión del "conector 1 del ventilador 6P1" de la PCB CR2-EN.
E311	Anomalía de la presión alta (1.er a 6.º incidente)	El aumento de la presión alta provocó una anomalía de la presión alta.	(1) Investigue la causa de la anomalía de la presión alta.(2) Revise el sensor de presión alta en busca de anomalías.
E32	Alarma de retorno de refrigerante	El sobrecalentamiento del gas de succión (diferencia entre la "temperatura del gas de succión" y la "temperatura de evaporación calculada a partir de la presión baja") llegó a ser de 1 K o inferior de forma continua durante 2 min.	Compruebe la causa de la operación de retorno del refrigerante.
E36	Anomalía de la presión intermedia (1.er a 6.º incidente)	El aumento de la presión intermedia provocó una anomalía de la presión intermedia.	(1) Investigue la causa de la anomalía de la presión intermedia.(2) Revise el sensor de presión intermedia en busca de cualquier anomalía.

Código de error	Significado	Causa	Método de corrección
E37	Anomalía de la presión de salida de la unidad (1.er a 6.º incidente)	El aumento de la presión de salida de la unidad provocó una anomalía en la presión de salida de la unidad.	 (1) Investigue la causa de la anomalía de la presión de salida de la unidad. (2) Revise el sensor de presión de salida de la unidad en busca de cualquier anomalía.
E46	Anomalía de la presión intermedia (7.º incidente)	El aumento de la presión intermedia provocó una anomalía de la presión intermedia.	 (1) Investigue la causa de anomalía de la presión intermedia (2) Revise el sensor de presión intermedia en busca de cualquier anomalía.
E47	Anomalía de la presión de salida de la unidad (7.º incidente)	El aumento de la presión de salida de la unidad provocó una anomalía en la presión de salida de la unidad.	(1) Investigue la causa de la anomalía de la presión de salida de la unidad.(2) Revise el sensor de presión de salida de la unidad en busca de cualquier anomalía.
E57	Anomalía del sensor de salida de la unidad	El sensor de temperatura de salida de la unidad presenta una anomalía (condición de circuito abierto).	 (1) Revise la conexión del "conector de salida 2P5 U" de la PCB CR2-EN. (2) Controle el valor de la resistencia del sensor de temperatura de salida de la unidad (Consulte "Método de verificación de las características del sensor").
E59	Anomalía del sensor de temperatura de salida del enfriador de gas	El sensor de temperatura de salida del enfriador de gas presenta una anomalía (condición de circuito abierto).	 Revise la conexión del "conector de salida 2P6 GC" de la PCB CR2-EN. Controle el valor de la resistencia del sensor de temperatura de salida del enfriador de gas (Consulte "Método de verificación de las características del sensor").
E6 _X 1 - E7X1	Anomalía del inversor	El funcionamiento del inversor es anormal.	 Siga el "Diagnóstico de fallas del inversor". (1) Verifique que la fuente de alimentación esté conectada a la base de terminales de la fuente de alimentación. (2) Confirme si tiene lugar una operación de sobrecarga. (3) Revise si hay una caída de voltaje en la fuente de alimentación o si falta una fase de alimentación. (4) Compruebe si el compresor está bloqueado. (5) Verifique que los "terminales U, V, W" de la PCB INV4-H-EN estén conectados al compresor. (6) Verifique que CN9 y CN6 o CN30 de la PCB NV4-MF-EN estén conectados al motor del ventilador.
E81	Anomalía del sensor de presión intermedia	El sensor de presión intermedia presenta una anomalía (condición de circuito abierto).	 (1) Revise la conexión del "conector de presión intermedia 3P2" de la PCB CR2-EN. (2) Verifique el voltaje de salida del sensor de presión intermedia (Consulte "Método de verificación de la resistencia de la bobina de la válvula de expansión electrónica").
E88	Anomalía del sensor de presión de salida de la unidad	El sensor de presión de salida de la unidad se ha vuelto anormal (condición de circuito abierto).	 Revise la conexión del "conector de salida 3P4 U" de la PCB CR2-EN. Controle el voltaje de salida del sensor de presión de salida de la unidad (Consulte "Método de verificación de las características del sensor").

Indicación	Significado	Método de corrección	Comentarios
LED de alarma (rojo) parpadea	Anomalía que ocurrió en el pasado. En el "Historial de alarmas" se guardan hasta 50 códigos de error anteriores.	Compruebe el código de error en la tabla anterior y elimine la causa. A continuación, coloque el interruptor giratorio (perilla) alineado con "Operation" (Funcionamiento) y presione o ponga el interruptor de funcionamiento en "OFF" (APAGADO). A continuación, el LED dejará de parpadear.	
La pantalla digital muestra "-CH-"	La PCB CR2-EN está en el modo de verificación.	Ponga el interruptor deslizante SW15 de la PCB CR2-EN en "Control".	Ponga el interruptor deslizante SW15 de la PCB CR2-EN en "Check" (Verificación) y los interruptores DIP SW13-1 y SW13-6 en "ON" y suministre corriente para entrar en el modo de verificación.

DIAGNÓSTICO DE PROBLEMAS DE TEMPERATURA ANORMAL DEL GAS DE DESCARGA

Cuando la temperatura del gas de descarga sube de forma anormal, el compresor se detiene para proteger los componentes de compresión, y al mismo tiempo se genera una alarma de temperatura anormal del gas de descarga. En tal caso, revise dónde se encuentra el problema y aplique las medidas pertinentes de la secuencia que se muestra a continuación.

Verificación del estado de funcionamiento del ciclo de refrigeración

- (1) ¿La cantidad de refrigerante es insuficiente?
 Consulte "Ajuste de la cantidad de refrigerante de la unidad de refrigeración" en "Ajuste durante el funcionamiento",
- □ (2) ¿La temperatura del gas de succión supera el límite?
- □ (3) ¿La presión baja es de 0.00 MPa o inferior?

Verificación del estado de funcionamiento del compresor

- □ (1) ¿Es normal el sonido durante el funcionamiento? (El sonido metálico es más alto cuando el funcionamiento es anormal)
- □ (2) ¿Es normal el valor de la corriente de funcionamiento?
- □ (3) ¿La temperatura de la carga refrigerada no presenta problemas?
- □ (4) ¿Se detecta algún otro aspecto anormal?

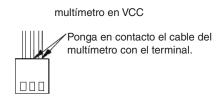
Verificación de los componentes de control

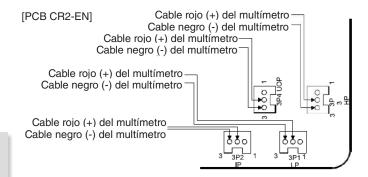
 (1) Estado de montaje del cuerpo del sensor de temperatura del gas de descarga, conector en la PCB CR2-EN.

DIAGNÓSTICO DE PROBLEMAS DEL MOTOR DEL VENTILADOR

- 1. Revise el "FUSIBLE" de la PCB INV4-MF-EN (imagen de la derecha).
 - a. Si el fusible está roto, sustituya la PCB INV4-MF-EN y el motor del ventilador.
 - b. Si el fusible no está roto, sustituya el motor del ventilador.

- 2. Si el GFI se ha disparado:
 - a. Compruebe la resistencia de aislamiento entre el circuito del motor del ventilador "CN9-1p" en la PCB INV4-MF-EN y la conexión a tierra (terminal G).
 - \dots Cuando la resistencia de aislamiento es de 1 Ω o inferior, existe una falla de aislamiento en la PCB INV4-MF-EN o en el motor del ventilador.
 - b. Desconecte "CN9" en la PCB INV4-MF-EN y verifique la resistencia de aislamiento entre el terminal de alimentación del motor del ventilador y la tierra.
 - \dots Cuando la resistencia del aislamiento es de 1 Ω o inferior, existe una falla de aislamiento en el motor del ventilador.
- 3. Cuando el motor del ventilador no gira con normalidad.
 - a. Cuando el motor del ventilador recibe corriente, no gira de forma uniforme (se detiene o gira de forma irregular) o produce un ruido como un rugido.
 - ... La causa es una falla en el cojinete del motor del ventilador.


VERIFICACIÓN DE LAS CARACTERÍSTICAS DEL SENSOR


1. Sensor de presión (baja, intermedia, salida de la unidad, presión alta)

Con el sensor de presión conectado a la PCB CR2-EN, mida el voltaje y verifique si la presión es normal utilizando la tabla siguiente.

Presión (MPa)	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00
Voltaje (VCC)	0.50	0.77	1.03	1.30	1.57	1.83	2.10	2.37	2.63	2.90	3.17	3.43	3.70

* En la tabla anterior, cuando el valor de presión sea un valor intermedio como 4.5 MPa, utilice un cálculo proporcional.

APRECAUCIÓN

- » Cuando controle el voltaje de un sensor de presión, utilice siempre el rango VCC del probador. Tenga cuidado, la medición utilizando el rango de resistencia puede provocar una falla del sensor.
- 2. Sensor de temperatura del gas de succión, sensor de temperatura de salida del enfriador de gas Mida la resistencia mientras el conector está desconectado de la PCB CR2-EN, y verifique si la temperatura es normal utilizando la tabla siguiente.

Temperatura (°C) -50 -40 -30 -20 -10 0 10 20 30 Valor de 77.58 43.34 25.17 15.13 9.39 6.00 3.94 2.64 1.82 resistencia (kΩ)

[Método de medición de la resistencia]

- * En la tabla anterior, cuando la temperatura sea un valor intermedio como -5 °C, utilice un cálculo proporcional.
- 3. Sensor de temperatura del gas de descarga

Mida la resistencia mientras el conector está desconectado de la PCB CR2-EN, y verifique si la temperatura es normal utilizando la tabla siguiente.

Temperatura (°C)	20	30	40	50	60	70	80	90	100	110	120
Valor de resistencia (kΩ)	70.13	45.05	29.67	20.00	13.79	9.71	6.97	5.09	3.77	2.84	2.16

^{*} En la tabla anterior, cuando la temperatura sea un valor intermedio como 65 °C, utilice un cálculo proporcional.

4. Otros sensores de temperatura (salida de la unidad, temperatura ambiente).

Mida la resistencia mientras el conector está desconectado de la PCB CR2-EN, y verifique si la temperatura es normal utilizando la tabla siguiente.

*En la tabla anterior, cuando la temperatura sea un valor intermedio como 35 °C, utilice un cálculo proporcional.

Temperatura (°C)	-10	0	10	20	30	40	50	60	70
Valor de resistencia (kΩ)	26.22	15.76	9.76	6.21	4.05	2.70	1.84	1.28	0.90

VERIFICACIÓN DE LA RESISTENCIA DE LA BOBINA DE LA VÁLVULA DE EXPANSIÓN ELECTRÓNICA

Bobina de la válvula de expansión electrónica:

Se utiliza en la válvula de expansión electrónica para la reducción de la presión (MOV5),

La válvula de expansión electrónica para el retorno de gas (MOV6), y la válvula de expansión electrónica para el retorno de líquido (MOV7)

Mida la resistencia con el conector desconectado de la PCB CR2-EN, y verifique si el valor de la resistencia es normal utilizando la tabla a continuación.

Posición de medición	Valor de resistencia
Entre el conector 1-6	185 Ω ±18 Ω
Entre el conector 2-6	185 Ω ±18 Ω
Entre el conector 3-6	185 Ω ±18 Ω
Entre el conector 4-6	185 Ω ±18 Ω

[Método de medición de la resistencia]

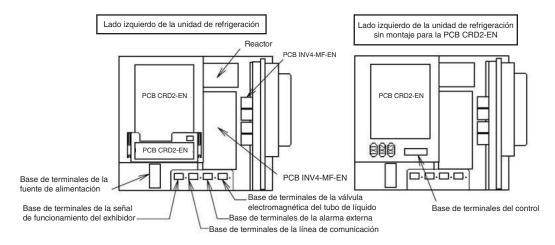
Ponga en contacto el cable del multímetro con el terminal.

NOTA: Temperatura ambiente 20 °C

Conector 6P13: Válvula de expansión electrónica para la reducción de la presión (MOV5)

Conector 6P14: Válvula de expansión electrónica para el retorno de gas (MOV6) Conector 6P15: Válvula de expansión electrónica para el retorno de líquido (MOV7)

APRECAUCIÓN


- » La PCB CR2-EN fallará cuando se suministre corriente mientras la resistencia de la bobina sea de 0 ohmios (en cortocircuito).
- » Cuando se cuestione una falla de movimiento de una válvula de expansión electrónica, controle siempre el valor de resistencia de la válvula de expansión electrónica antes de sustituir la PCB CR2-EN.

DIAGNÓSTICO DE FALLAS DEL CIRCUITO DEL INVERSOR

▲PRECAUCIÓN

- » Cuando realice una inspección o sustitución, asegúrese de empezar a trabajar después de que se haya apagado la luz roja de indicación de peligro por alto voltaje en la PCB INV4- H-EN.
- » (Se necesitan aproximadamente 5 minutos para que se descargue el condensador)

Disposición interna de la caja de conexiones eléctricas

Cuando la unidad se pare debido a que el GFI se ha disparado, revise todas las causas siguientes en la tabla de abajo.

Causa	Método de verificación	Método de acción	
Falla del compresor	Compruebe la resistencia del aislamiento entre cada fase del compresor y el exhibidor. Menos de 1 M Ω indica una falla del motor.	Sustituya el compresor	
	Verifique la resistencia del devanado del compresor. De 0.27 a 0.37 Ω (a 77 °F (25 °C)) indica que no hay problema.		
Falla de un componente eléctrico distinto del compresor.	Compruebe la resistencia del aislamiento entre cada terminal de salida de la PCB INV4-MF-EN, la PCB INV4-H-EN y la tierra (terminal G). Menos de 1 M Ω indica una falla del aislamiento de la PCB INV4-MF-EN o la PCB INV4-H-EN.	Sustituya la PCB INV4-MF-EN o la PCB INV4-H-EN.	

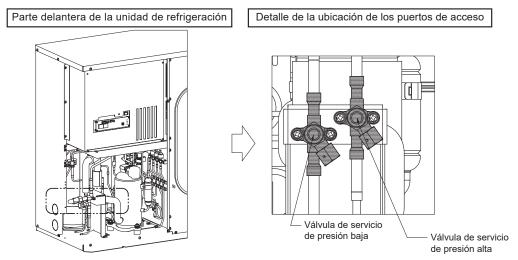
▲PRECAUCIÓN

» Asegúrese de eliminar la causa de la falla antes de suministrar corriente (encendiendo el GFI).

DIAGNÓSTICO DE FALLAS DEL CIRCUITO DEL INVERSOR (PCB INV4-MF-EN, PCB INV4-H-EN)

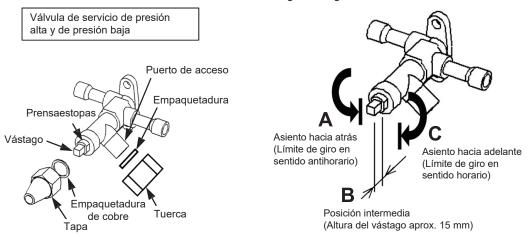
Cuando se genera una anomalía en el inversor (E6XX a E7XX), revise todas las causas siguientes en la tabla de abajo.

Causa	Método de verificación	Método de acción
Condición de sobrecarga	 Revise si la corriente del motor del compresor o del motor del ventilador, o de ambos, es alta. Revise si se ha producido alguna condición de sobrecarga incluso en un corto periodo de tiempo. 	Elimine la causa de la sobrecarga.
Anomalía del voltaje de alimentación	Verifique que el voltaje de alimentación suministrado a la unidad de refrigeración esté en el rango de 208 V ± 20 V / 230 V ± 23 V / 460 V ± 46 V.	Realice el mantenimiento de la instalación de suministro eléctrico.
Falla de la PCB INV4-MF-US O la PCB INV4-H-EN.	Cuando el voltaje suministrado a la unidad de refrigeración esté en el rango de 208 V ± 20 V / 230 V ± 23 V / 460 V ± 46 V, verifique si existe alguna anomalía en el aspecto de la PCB INV4-MF-EN o la PCB INV4-H-EN.	Sustituya la PCB INV4-MF-US o la PCB INV4-H-US, o ambas.
Falla del FUSIBLE de la PCB INV4-MF-US	Revise los fusibles FUSE1, FUSE2, FUSE3 de la PCB INV4-MF-US. 1) Si alguno está roto 2) Si no están rotos Revise el fusible FUSE7 de la PCB INV4-MF-US. 1) Si alguno está roto 2) Si no están rotos	Sustituya la PCB INV4-MF-US, la PCB INV4-H-US y el compresor Sustituya el compresor Sustituya la PCB INV4-MF-EN y el motor del ventilador Sustituya el motor del ventilador


APRECAUCIÓN

» Cuando hay una causa externa como un corte momentáneo de corriente o un rayo, o una sobrecarga de corta duración, se genera un error por sobrecorriente momentánea incluso sin que se produzca ninguna falla en los componentes.

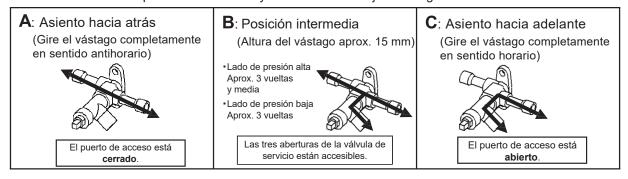
PROCEDIMIENTOS DE SERVICIO


MÉTODO DE FUNCIONAMIENTO DE LA VÁLVULA DE SERVICIO

1. Ubicación de las válvulas de servicio y los puertos de acceso

2. Método de operación de las válvulas de servicio

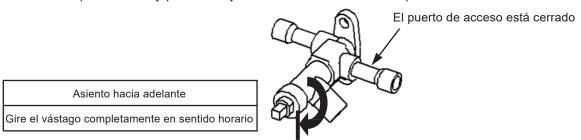
Las válvulas de servicio se dividen en las dos categorías siguientes.

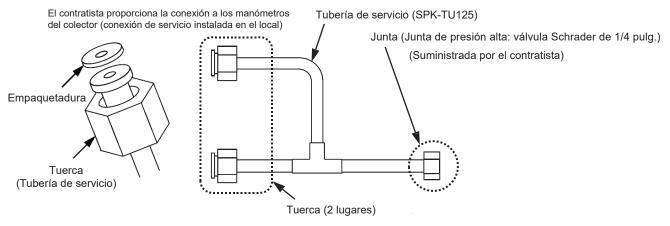


Notas:

- 1. La empaquetadura de cobre, el tapón y la tuerca deben instalarse después del trabajo. (prevención de fugas de gas)
- Compruebe el apriete correcto de los prensaestopas de las válvulas de servicio y apriételos si es necesario.
- 3. Los pares de apriete recomendados son los siguientes.

Tapa: 265 +/- 44 lb-pulg. (30 +/- 5 Nm). Tuerca: 115 +/- 9 lb-pulg. (13 +/- 1 Nm), Prensaestopas: 88 +/- 9 lb-pulg. (10 +/- 1 Nm)

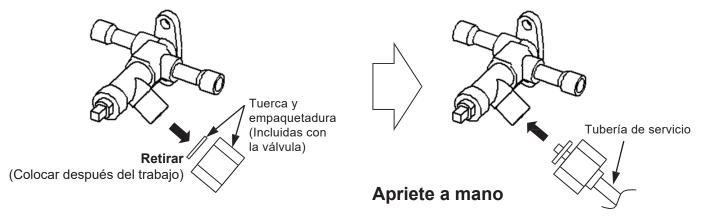

3. Relación entre cada posición del asiento y la dirección del flujo de refrigerante


MÉTODO DE CONEXIÓN/DESCONEXIÓN DE LA TUBERÍA DE SERVICIO

1. Preparación para la conexión de la tubería de servicio

1) Para llevar el asiento de las válvulas de servicio hacia adelante, gire el vástago de las válvulas de servicio de presión alta y presión baja en sentido horario todo lo posible.

2) Coloque una empaquetadura en la tubería de servicio (2 lugares).



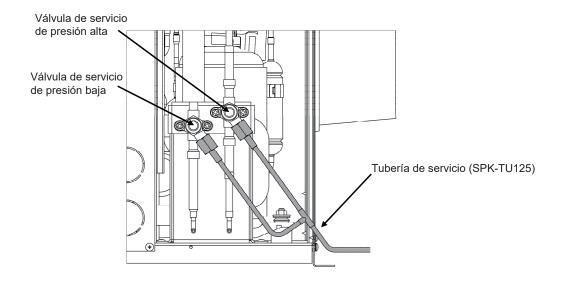
Notas: 1. Utilice una empaguetadura nueva.

2. Verifique que no haya objetos extraños adheridos.

2. Conexión de la tubería de servicio

- 1) Retire la tuerca y la empaquetadura incluidas con la válvula de servicio (2 lugares).
- 2) Monte la tubería de servicio.
 - Gire la tuerca con la mano hasta que sea necesario apretar la empaquetadura con una herramienta.
 - Si resulta difícil apretarla, afloje un poco la tuerca e intente alinearla gradualmente, en paralelo con la rosca macho de la válvula de servicio.

Notas: Si se aprieta la tuerca con una herramienta cuando las roscas no están completamente alineadas, se puede romper la rosca y provocar una fuga de gas.

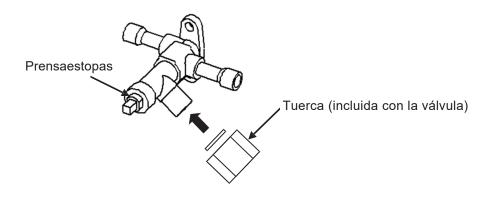

MÉTODO DE CONEXIÓN/DESCONEXIÓN DE LA TUBERÍA DE SERVICIO

(Continuación)

3. Apriete de la tubería de servicio

Apriete las tuercas a mano hasta que queden bien ajustadas y, a continuación, apriételas con una herramienta hasta el par de apriete especificado. Se recomienda un par de apriete de las tuercas de 115 ± 9 lb-pulg. $(13 \pm 1 \text{ Nm}).$

Nota: Apretar demasiado la tuerca puede dañar la conexión de servicio.


4. Después de finalizar las operaciones de servicio

- 1) Después de finalizar las operaciones de servicio, como la evacuación y la carga de refrigerante, gire el vástago de las válvulas de servicio de presión alta y presión baja en sentido horario todo lo posible. (El puerto de acceso está cerrado).
- 2) Debe purgarse cualquier resto de nitrógeno o refrigerante en la tubería de servicio.
- 3) Desmonte la tubería de servicio. Después de desmontar la tubería de servicio, instale a mano la tuerca colocada originalmente en la válvula de servicio. (Consulte "2. Conexión de la tubería de servicio").
- 4) Apriete la tuerca. Se recomienda un par de apriete de 115 ± 9 lb-pulg. (13 ± 1 Nm). (Consulte "3. Apriete de la tubería de servicio").
- 5) Verifique que los prensaestopas de las válvulas de servicio de presión baja y presión alta no estén flojos y apriételos si es necesario. El par de apriete es de 89 ± 7 lb-pulg. (10 ± 2 Nm).

Asiento hacia adelante

Gire el vástago completamente en sentido horario

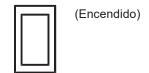
MODO DE EVACUACIÓN

1. Modo de evacuación

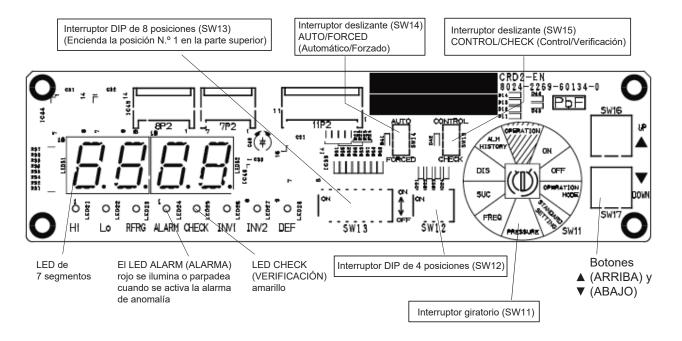
En el modo de evacuación, abra completamente la válvula de expansión electrónica y la válvula solenoide de la unidad de refrigeración.

Nota: Si la unidad de refrigeración no está ajustada en el modo de evacuación, la válvula de expansión electrónica y la válvula solenoide de la unidad no se abren, por lo que la evacuación queda incompleta.

2. Procedimiento del modo de evacuación

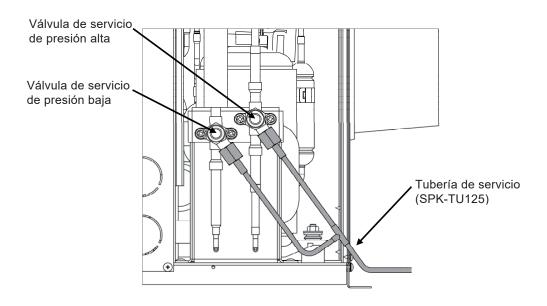

1) Apague el GFI.

Nota: El modo de evacuación no puede iniciarse si se está suministrando energía a la unidad de refrigeración.


- 2) Encienda el interruptor de funcionamiento (interruptor deslizante S1).
- 3) Encienda el interruptor DIP SW13-1 de la PCB CRD2-EN.
- 4) Ponga el interruptor deslizante SW15 ("Control/Check") de la PCB CRD2-EN en "Check" (Verificación).
- 5) Encienda el GFI. (Suministre energía a la unidad de refrigeración).
- 6) El LED de 7 segmentos indica

Presión baja → Presión alta → Presión de salida de la unidad → Vacío (uAcU) —

Interruptor de funcionamiento S1 (Encendido) (Fijado a la caja de conexiones eléctricas)


PCB CRD2-EN (fijada a la caja de conexiones eléctricas, consulte la página 32 para ver una fotografía)

PROCEDIMIENTO DE LIBERACIÓN DE REFRIGERANTE

- 1. Preparación para la descarga de refrigerante
 - 1) Verifique que los puertos de acceso de la válvula de servicio de presión alta y presión baja estén cerrados. (asiento hacia adelante)
 - 2) Conecte la tubería de servicio con la válvula de unión en posición "cerrada".
 - 3) Apriete las tuercas a mano hasta la condición que se muestra abajo, y luego apriételas con una herramienta. Se recomienda un par de apriete de las tuercas de 115 ± 9 lb-pulg. (13 ± 1 Nm).

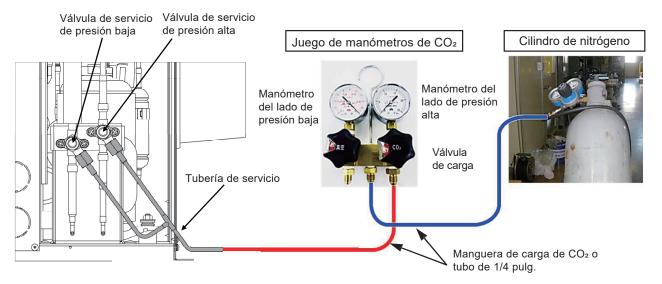
Nota: Apretar demasiado la tuerca puede deformar la empaquetadura.

- 2. Liberación de refrigerante
 - 1) Ponga la unidad en el modo de evacuación.
 - Lleve el asiento de las válvulas de servicio de presión baja y presión alta hacia atrás. (Los puertos de acceso están abiertos).
 - 3) Abra lentamente la válvula de unión para liberar el refrigerante.

Asiento hacia atrás

Gire el vástago completamente en sentido antihorario

▲PRECAUCIÓN


» La liberación rápida de refrigerante podría hacer que saliera aceite junto con el refrigerante.

PROCEDIMIENTO DE LA PRUEBA DE ESTANQUEIDAD

(Realice esta prueba una vez finalizados los trabajos en las tuberías y la prueba de estanqueidad, pero antes de iniciar los trabajos de aislamiento térmico)

APRECAUCIÓN

- » Asegúrese de cerrar la válvula de vacío del juego de manómetros de CO₂
- 1. Preparación para la prueba de estanqueidad
 - 1) Conecte la válvula de unión de la tubería de servicio (SPK-TU125) y el juego de manómetros exclusivo para refrigerante CO₂ utilizando una manguera de carga de CO₂ o un tubo de 1/4 pulg.
 - 2) Conecte un cilindro de nitrógeno y el juego de manómetros utilizando una manguera de carga de CO₂ o un tubo de 1/4 pulg.

2. Prueba de estangueidad

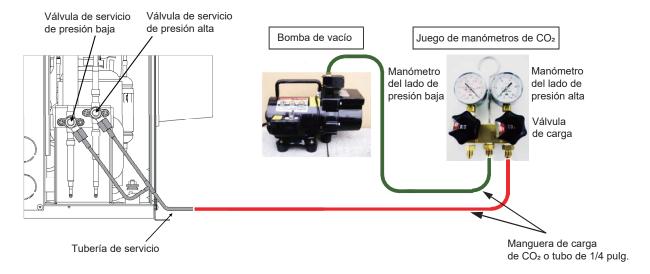
- Ponga la unidad en el modo de evacuación de acuerdo con "Modo de evacuación".
- 2) Realice la prueba de estanqueidad de las tuberías interconectadas (la línea de líquido y la línea de succión). Cuando realice la prueba de estanqueidad de las tuberías interconectadas, lleve el asiento de las válvulas de servicio de presión baja y presión alta hacia atrás. (Los puertos de acceso están abiertos).

Nota: La prueba de estanqueidad de la unidad de refrigeración se realizó al momento de enviar la unidad de fábrica. Las pruebas de presión solo deben ser realizadas por personal / empresas que dispongan de la certificación necesaria. Preste especial atención a las normativas locales y a la norma EN378.

Presión de diseño de fábrica

Lado del líquido	Lado de succión	
(Lado de presión alta)	(Lado de presión baja)	
1015 psig (7 MPa)	1015 psig (7 MPa)	

PROCEDIMIENTO DE CONEXIÓN DE LA BOMBA DE VACÍO Y EVACUACIÓN


APRECAUCIÓN

» La evacuación debe realizarse después de finalizar la prueba de estanqueidad siguiendo los códigos y normativas locales.

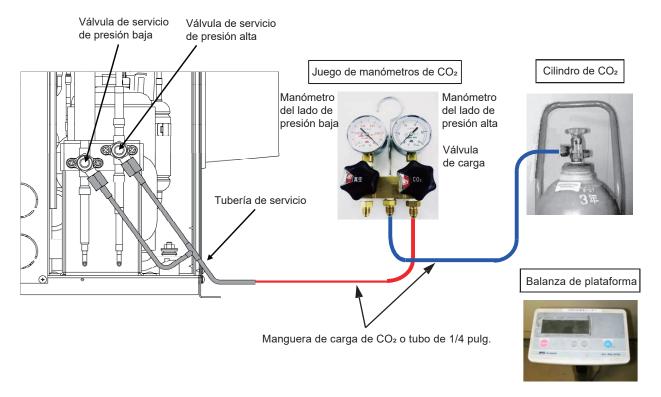
1. Conexión de la bomba de vacío y de las tuberías

- 1) Conecte la válvula de unión de la tubería de servicio (SPK-TU125) y el juego de manómetros exclusivo para refrigerante CO₂ utilizando una manguera de carga de CO₂ o un tubo de 1/4 pulg.
- 2) Conecte una bomba de vacío y el juego de manómetros utilizando una manguera de carga o un tubo de 1/4 pulg.

Nota: El manómetro del lado de presión baja para esta operación debe poder indicar el nivel de vacío que debe alcanzarse (-0.1 MPa).

2. Evacuación

- Ponga la unidad en el modo de evacuación de acuerdo con "Modo de evacuación".
- 2) Lleve el asiento de las válvulas de servicio de presión baja y presión alta hacia atrás (los puertos de acceso están abiertos), y accione la bomba de vacío.
- 3) Continúe la evacuación hasta que la indicación del manómetro del lado de presión baja alcance -0.1 MPa y prosiga la evacuación durante 1 a 3 horas más.


Gire el vástago completamente en sentido antihorario

Nota: Si no se alcanza el nivel de vacío previsto (-0.1 MPa) al cabo de 2 horas, compruebe si hay fugas en la instalación.

PROCEDIMIENTO DE CARGA DE REFRIGERANTE


APRECAUCIÓN

- » Asegúrese de cerrar la válvula de vacío del juego de manómetros de CO₂.
- 1. Preparación para la carga de refrigerante
 - 1) Conecte la válvula de unión de la tubería de servicio (SPK-TU125) y el juego de manómetros exclusivo para refrigerante CO₂ utilizando una manguera de carga de CO₂ o un tubo de 1/4 pulg.
 - 2) Coloque un cilindro de refrigerante CO₂ sobre una balanza de plataforma y conecte el juego de manómetros por medio de una manguera de carga de CO₂ o un tubo de 1/4 pulg.

3) Verifique que la válvula de unión esté cerrada y lleve el asiento de la válvula de servicio de presión hacia atrás (el puerto de acceso está abierto) y el asiento de la válvula de servicio de presión baja hacia adelante.

Nota: No cargue la unidad de refrigeración con refrigerante líquido por el lado de presión baja en ninguna circunstancia. Consulte los procedimientos de Carga inicial de refrigerante y Método de carga que se muestran en las páginas 20 y 21.

4) Ajuste el cero de la balanza de plataforma.

PROCEDIMIENTO DE CARGA DE REFRIGERANTE

(Continuación)

5. Calidad del refrigerante CO2

Cargue refrigerante CO₂ (R744) que sea compatible con las siguientes especificaciones.

Artículo	Especificaciones
Pureza	> 99.9% (volumen)
Humedad	< 0.005% (volumen)
Azufre total	< 0.03 ppm (peso)
Gas inerte (H ₂ , N ₂ , O ₂ , Ar)	< 0.01% (volumen)

6. Carga de refrigerante

1) Con la unidad de refrigeración detenida, abra la válvula de unión y cargue gradualmente la unidad de refrigeración con refrigerante en estado líquido.

Cuando sea difícil ajustar la velocidad de carga utilizando la válvula de unión o la válvula de carga del juego de manómetros, instale un tubo capilar entre el cilindro de refrigerante CO₂ y el juego de manómetros.

Nota: No instale un tubo capilar entre la tubería de servicio y el juego de manómetros.

2) Cuando ya no ingrese más refrigerante líquido a la unidad de refrigeración, cierre el puerto de acceso de la válvula de servicio de presión alta (asiento hacia adelante) y ponga la unidad de refrigeración en condiciones de funcionamiento de enfriamiento para ajustar la cantidad de refrigerante utilizando el puerto de acceso de la válvula de servicio de presión baja (asiento hacia atrás).

Nota: Para evitar una sobrecarga, mantenga la velocidad de carga en unos 20 g por 5 segundos.

- 3) Una vez finalizada la operación de carga, cierre la válvula del cilindro de refrigerante y verifique que los puertos de acceso de las válvulas de servicio de presión baja y presión alta estén cerrados.
- 4) Abra gradualmente la válvula de purga del juego de manómetros y libere el refrigerante que quede en la tubería de servicio, en el juego de manómetros y en la manguera de carga (o tubo de 1/4 pulg.). Cuando desconecte la tubería de servicio, consulte "Método de conexión/desconexión de la tubería de servicio".

PROCEDIMIENTO DE REPARACIÓN DE FUGAS DE GAS

- 1. Identificación de la ubicación de la fuga de gas
 - 1) Cuando utilice un detector de fugas de tipo líquido Identifique la ubicación de la fuga de aceite.

Encuentre fugas de gas aplicando el detector de fugas de tipo líquido y observando si se forma espuma.

2) Cuando utilice un detector de fugas

Identifique la ubicación de la fuga de aceite.

Detecte fugas de gas acercando la sonda del detector de fugas a la ubicación identificada.

Nota: Tenga la precaución de no soplar aire durante el proceso de detección. El detector reacciona cuando se sopla aire.

2. Liberación de refrigerante

Libere el refrigerante de acuerdo con el "Procedimiento de liberación del refrigerante".

3. Procedimiento de reparación por soldadura

1) Prepárese para el procedimiento de soldadura.

Necesitará las siguientes herramientas durante el procedimiento de soldadura:

- Soplete de soldadura
- Aleación para soldar de cobre y fósforo
 Si va a soldar con una aleación de plata, no utilice ningún fundente que contenga cloro.
- Placa protectora, placa de aislamiento térmico, paño de tela húmedo
- Nitrógeno para soplar y de repuesto
- 2) Realice el procedimiento de soldadura.

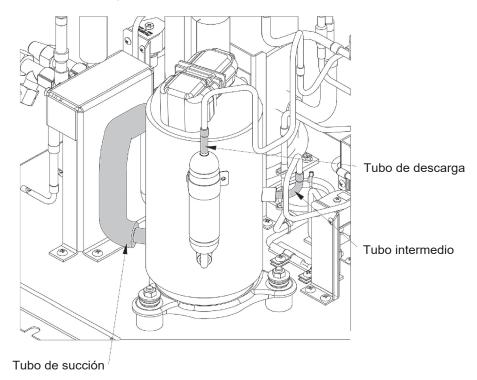
Dado que los tubos de cobre utilizados con la unidad de refrigeración de CO₂ tienen una pared más gruesa que los de la unidad de refrigeración de HFC, asegúrese de que el material de soldadura fundido cubra por completo la zona que se quiere soldar.

- **Notas: 1.** Durante la soldadura, mantenga un flujo de nitrógeno exento de oxígeno a través de la zona a soldar, a una presión muy baja. El nitrógeno desplaza el aire y evita la formación de óxidos de cobre en la zona a soldar.
 - **2.** Durante la soldadura, asegúrese de que no queden restos de aceite de refrigeración en la superficie.

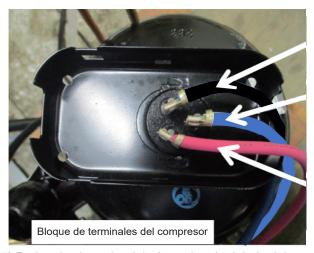
4. Prueba de estanqueidad

Realice la prueba de estanqueidad de acuerdo con el "Procedimiento de prueba de estanqueidad".

5. Evacuación


Realice la evacuación de acuerdo con el "Procedimiento de conexión de la bomba de vacío y evacuación".

6. Carga de refrigerante


Cargue la unidad de refrigeración con refrigerante de acuerdo con el "Procedimiento de carga de refrigerante".

PROCEDIMIENTO DE SUSTITUCIÓN DEL COMPRESOR

- 1. Preparación para la sustitución del compresor
 - 1) Libere el refrigerante de acuerdo con el "Procedimiento de liberación del refrigerante".
 - 2) Retire el material de aislamiento térmico del tubo de succión de la 1.ª etapa (corte los precintos).
 - 3) Retire el sensor de temperatura del tubo de descarga de la 2.ª etapa.
 - 4) Afloje los tres tornillos que sujetan el compresor.

- 5) APAGUE el GFI cuando la indicación de presión en la PCB CR2-EN llegue a cero y ya no se escuche que se libera refrigerante.
- 6) Retire la cubierta de terminales del compresor y desconecte todos los cables conductores de las fases U,V y W del bloque de terminales del compresor S(W), R y C(T).

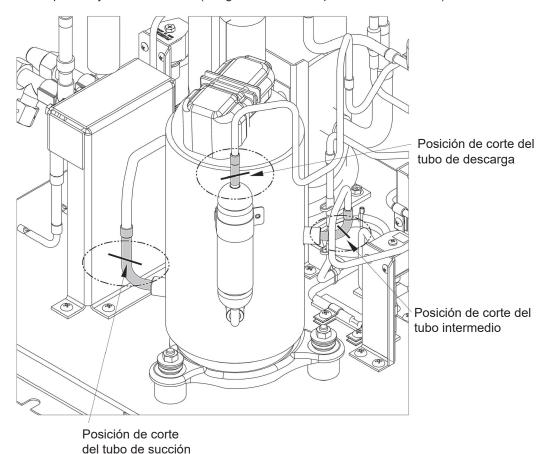
Cable conductor de fase C(T) (blanco) La notación en el diagrama de circuitos es W.

Cable conductor de fase S(W) (azul). La notación en el diagrama de circuitos es V.

Cable conductor de fase R (rojo) La notación en el diagrama de circuitos es U.

7) Retire el calentador del cárter situado debajo del compresor.

PROCEDIMIENTO DE SUSTITUCIÓN DEL COMPRESOR

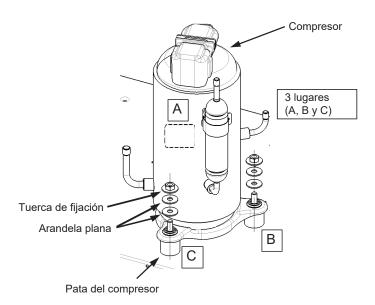

(Continuación)

APRECAUCIÓN

» Use siempre un equipo de protección cuando dé servicio al equipo.

2. Desmontaje del compresor

- 1) Una vez finalizada la preparación para la sustitución del compresor, corte las tuberías del compresor en cinco puntos (succión de la 1.ª etapa, descarga de la 1.ª etapa, succión de la 2.ª etapa, descarga de la 2.ª etapa y retorno de aceite) utilizando un cortatubos o un cortacables.
 - **Nota: 1.** La posición de corte debe estar del lado del compresor de la pieza soldada, como se indica a continuación. Cortar el lado de la unidad de refrigeración impediría la recuperación.
 - 2. Tenga suficiente precaución para no deformar la parte soldada del tubo mientras corta.
- 2) Retire el perno de fijación, la arandela elástica, la arandela plana y la arandela de goma protectora, etc. en tres lugares (dos lugares en la parte delantera y uno en la parte posterior) del compresor que se va a sustituir.
- 3) Retire el compresor de la unidad de refrigeración.
- 4) Retire el tubo del compresor que queda del lado de la unidad de refrigeración calentando el extremo cortado.
 - **Nota: 1.** Para evitar la radiación de la llama de calentamiento, asegúrese de cubrir los cables y el material de aislamiento térmico con un trapo de tela húmedo.
 - 2. Durante el calentamiento, suministre gas nitrógeno utilizando la tubería de servicio (SPK-TU125). El nitrógeno desplaza el aire y evita la formación de óxidos de cobre en la zona de calentamiento.
- 5) Retire la parte sujeta de la tubería. (Asegúrese de evitar que se doble/deforme).



PROCEDIMIENTO DE SUSTITUCIÓN DEL COMPRESOR

(Continuación)

- 3. Instalación del compresor de servicio
 - 1) Coloque el compresor de servicio en su posición original, e instale el perno de fijación, la arandela elástica, la arandela plana y la arandela de goma protectora, etc. (tres lugares).
- Nota: 1. Una fijación incorrecta puede causar vibraciones excesivas y provocar la rotura de las tuberías. Compárela minuciosamente con la ilustración que se muestra a continuación.
 - 2. La tuerca de fijación de cada pata del compresor debe apretarse una vez y luego volver a apretarse a efectos de confirmación. (dos veces en total)

Orden de apriete $A \Rightarrow B \Rightarrow C \Rightarrow A \Rightarrow B \Rightarrow C$, el par de apriete es de 115 ± 9 lb-pulg. (13 ± 1 Nm)

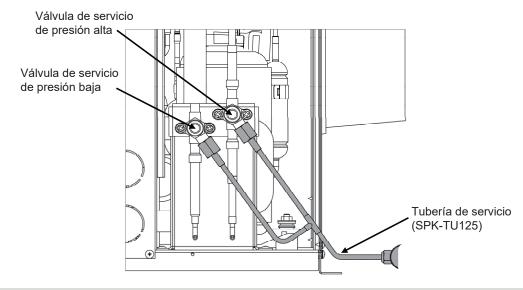
2) Introduzca cada tubo en el compresor y conéctelo mediante soldadura.

Nota: Durante la soldadura, suministre gas nitrógeno utilizando la tubería de servicio (SPK-TU125). El nitrógeno desplaza el aire y evita la formación de óxidos de cobre en la zona a soldar.

- 3) Una vez finalizada la soldadura, realice una prueba de estanqueidad de la parte soldada.
- 4) Vuelva a conectar los cables retirados en su configuración original.
 - Cableado del compresor, cubierta de terminales
- 5) Conecte la alimentación y confirme que se encuentre en el modo de evacuación (indicación "uAcU" en la PCB CR2-EN). (Consulte "Modo de evacuación").
- 6) Libere el nitrógeno utilizado para la prueba de estanqueidad y aplique la evacuación.
- 7) Durante la evacuación, instale el resto de los materiales de aislamiento térmico, materiales antivibración, etc.
 - Sensor de temperatura del gas de descarga
 - Material de aislamiento térmico
 - Calentador del cárter
- 8) Una vez finalizada la evacuación, cargue la cantidad especificada de refrigerante.

PROCEDIMIENTO PARA RELLENAR EL ACEITE

APRECAUCIÓN


- » En principio, no es necesario agregar aceite a la unidad de refrigeración. Sin embargo, si es necesario hacerlo al mover la unidad de refrigeración o por otros motivos, siga el siguiente procedimiento:
- » (Cualquier falla de una unidad de refrigeración como consecuencia del traslado no está cubierta por la garantía).

1. Liberación de refrigerante y evacuación

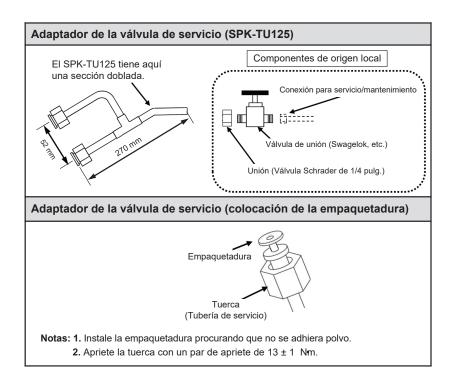
- Lleve a cabo la liberación de refrigerante y la evacuación del circuito de refrigerante de acuerdo con e "Procedimiento de liberación de refrigerante" y el "Procedimiento de conexión de la bomba de vacío y evacuación".
- 2) Una vez terminada la evacuación, lleve el asiento de las válvulas de servicio de presión alta y presión baja hacia atrás. (Los puertos de acceso de las válvulas de servicio de presión alta y presión baja están cerrados).
- 3) Retire la tubería de servicio (SPK-TU125).

2. Agregado de aceite

- Conecte la tubería de servicio para aceite (SPK-TU125) a la válvula de servicio de presión baja.
 (La válvula de unión de la tubería de servicio está "CERRADA")
- 2) Monte el tubo de extensión a la válvula de unión. Asegúrese de que la punta del tubo alcance el fondo del recipiente de aceite.
- 3) Coloque la válvula de servicio de presión baja en la posición intermedia (los puertos de acceso están abiertos), y abra la válvula de unión (el aceite es aspirado). Lleve el asiento de la válvula de servicio de presión alta hacia atrás.
- 4) Una vez finalizada la aspiración de aceite, cierre la válvula de unión y retire el tubo de extensión de la válvula de unión.
- 5) Conecte un cilindro de nitrógeno a la válvula de unión. Bombee el aceite que quede en la tubería de servicio al circuito utilizando nitrógeno.
- 6) Una vez terminado este proceso, lleve el asiento de la válvula de servicio de presión baja hacia atrás y retire la tubería de servicio y el cilindro de nitrógeno.

▲PRECAUCIÓN

» Cuando ajuste cada válvula de servicio con el asiento hacia adelante, vuelva a comprobar previamente que no haya holgura en la tuerca de cada válvula de servicio, ni en la junta del adaptador de la válvula de servicio. Una tuerca o una junta de tubería flojas pueden provocar fugas de refrigerante.


ACCESORIOS OPCIONALES

Nombre	Detalles	Unidad de refrigeración correspondiente
Filtro de la línea de succión Número de pieza: 3201567	KGQ-S45070-001 (Sanhua) Conexión de ½ pulg., longitud de 5.8 pulg.	
Filtro secador de la línea de líquido Número de pieza: 3175674	CASTEL o Sanhua Conexión de ½ pulg., longitud de 5.8 pulg.	OCU040xxx
Adaptador de la válvula de servicio Número de pieza: 3202781	SPK-TU125	
Idemitsu Oil Número de pieza: 3204671	1 cuarto de galón	

Adaptador de la válvula de servicio

El adaptador de la válvula de servicio es necesario para conectar la unidad de refrigeración y la bomba de vacío, los cilindros, etc., durante la instalación.

Use estos elementos para conectar componentes de origen local.

PIEZAS DE REPUESTO

I	Número de pieza	Descripción del artículo
1.	3174959	COMPRESOR 8LV080ZA0F0B
2.	3204671	ACEITE-PZ68S (1 cuarto de galón)
3.	3175862	SERPENTÍN-ENFRIADOR DE GAS CR400VF8A
4.	3175567	SUBENFRIADOR CR400VF8A
5.	3175597	PROTECCIÓN-VENTILADOR CR400VF8A
6.	3175602	VÁLVULA-HPV-102D, VÁLVULA SOLENOIDE EV1
7.	3175855	SERPENTÍN-EV1 HPV MOAJ503A1
8.	3175624	VENTILADOR-ASPA CR400VF8A
9.	3176060	TRANSDUCTOR-HSK-BC150D-014
10.	3175670	SENSOR-TEMP. DE SALIDA DEL ENFRIADOR DE GAS
11.	3175671	SENSOR-TEMP. AMBIENTE
12.	3175672	SENSOR-TEMP. DEL GAS DE DESCARGA
13.	3176061	SENSOR-TEMP. DEL INTERCAMBIADOR DE CALOR
		SPLIT/SALIDA DE LA UNIDAD
14.	3177339	SENSOR-TEMP. DE LA CAJA DE CONEXIONES ELÉCTRICAS
15.	3175674	SECADOR DEL FILTRO-DTG-C05030-901, 3/8 PULG.
16.	3201567	COLADOR-KGQ-S45070-01, FILTRO DE SUCCIÓN 1/2 PULG.
17.	3175707	VÁLVULA-DPF R05 2.4D-04, MOV5/6 CUERPO
18.	3175709	VÁLVULA-SERPENTÍN PQ-M08024-13001, MOV5/6 SERPENTÍN
19.	3175710	VÁLVULA-DPF R04 1.5D-07, MOV7 CUERPO
20.	3175712	VÁLVULA-SERPENTÍN PQ-M15024-001003, MOV7 SERPENTÍN
21.	3175856	VÁLVULA-EV2 HPV-402DQ3
22.	3175857	SERPENTÍN-EV2 HPV-MOAQ2680C1
23.	3175858	MOTOR-SIC-71FW-D8120-10A
24.	3175861	RELÉ-AUXILIAR MC200-240A2-F
25.	3176059	CALENTADOR DEL CÁRTER-SP4518P-X
26.	3176299	INTERRUPTOR-PRESIÓN ALTA CC 12 V
27.	3176369	REACTOR-25 A 60 HZ
28.	3181681	VÁLVULA-PRESIÓN ALTA 0.500 120 BAR
29.	3201559	VÁLVULA-PRESIÓN ALTA 0.500 90 BAR
30.	3181680	VÁLVULA-PRESIÓN INTERMEDIA 0.500 80 BAR
31.	3197644	VÁLVULA-PRESIÓN ALTA 0.500 60 BAR
32.	3181761	ADAPTADOR-VÁLVULA DE ALIVIO DE PRESIÓN 0.500
33.	3182229	FILTRO-CONTROL CR400VF8A
34.	3197463	PCBA-INV4-MF-EN
35.	3197464	PCBA-INV4-H-EN
36.	3197465	PCBA-CR2-EN
37.	3197466	PCBA-CRD2-EN
38.	0397726000	RELÉ-MONITOR DE VOLTAJE TRIFÁSICO 201 A

INFORMACIÓN DE LA GARANTÍA

HUSSMANN®

Para obtener información acerca de la garantía u otro tipo de soporte, contacte a su representante de Hussmann o visite: https://www.hussmann.com/services/warranty.

Incluya el número del modelo y de serie del producto.

Si tiene alguna pregunta sobre su equipo, póngase en contacto con nuestro Equipo de asistencia técnica al 866-785-8499

Para obtener asistencia general o llamadas de servicio, póngase en contacto con nuestro Centro de atención al cliente al 800-922-1919

Para pedir piezas de garantía de mercado secundario al 1-855-Huss-Prt (1-855-487-7778) Hussmann part warranty@hussmann.com

REVISIONES

- Rev. A Septiembre de 2024 Versión inicial
- Rev. B Noviembre de 2024 Se agregó la guía previa al arranque, se actualizó el enlace a la herramienta de cálculo, se actualizó el texto en varios lugares y se actualizó el diagrama eléctrico
- Rev. C Febrero de 2025 Se actualizó el diagrama eléctrico
- Rev. D Mayo de 2025 Se actualizó el método de carga.